These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
58 related articles for article (PubMed ID: 21327227)
1. Development of a sampling method for the simultaneous monitoring of straight-chain alkanes, straight-chain saturated carbonyl compounds and monoterpenes in remote areas. Detournay A; Sauvage S; Locoge N; Gaudion V; Leonardis T; Fronval I; Kaluzny P; Galloo JC J Environ Monit; 2011 Apr; 13(4):983-90. PubMed ID: 21327227 [TBL] [Abstract][Full Text] [Related]
2. Development and validation of an automated monitoring system for oxygenated volatile organic compounds and nitrile compounds in ambient air. Roukos J; Plaisance H; Leonardis T; Bates M; Locoge N J Chromatogr A; 2009 Dec; 1216(49):8642-51. PubMed ID: 19863965 [TBL] [Abstract][Full Text] [Related]
3. Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs). Gallego E; Roca FJ; Perales JF; Guardino X Talanta; 2010 May; 81(3):916-24. PubMed ID: 20298873 [TBL] [Abstract][Full Text] [Related]
4. Biogenic volatile organic compounds (BVOCs) emissions from Abies alba in a French forest. Moukhtar S; Couret C; Rouil L; Simon V Sci Total Environ; 2006 Feb; 354(2-3):232-45. PubMed ID: 16140360 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous determination of airborne carbonyls and aromatic hydrocarbons using mixed sorbent collection and thermal desorption-gas chromatography/mass spectrometric analysis. Chien YC; Yin KG J Environ Monit; 2009 May; 11(5):1013-9. PubMed ID: 19436859 [TBL] [Abstract][Full Text] [Related]
6. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options. Woolfenden E J Chromatogr A; 2010 Apr; 1217(16):2674-84. PubMed ID: 20106481 [TBL] [Abstract][Full Text] [Related]
7. Indoor-outdoor distribution and risk assessment of volatile organic compounds in the atmosphere of industrial and urban areas. Massolo L; Rehwagen M; Porta A; Ronco A; Herbarth O; Mueller A Environ Toxicol; 2010 Aug; 25(4):339-49. PubMed ID: 19449388 [TBL] [Abstract][Full Text] [Related]
8. Characterization of organic compounds in aerosol particles from a coniferous forest by GC-MS. Rissanen T; Hyötyläinen T; Kallio M; Kronholm J; Kulmala M; Riekkola ML Chemosphere; 2006 Aug; 64(7):1185-95. PubMed ID: 16434076 [TBL] [Abstract][Full Text] [Related]
9. Influence of relative humidity and ozone on the sampling of volatile organic compounds on carbotrap/carbosieve adsorbents. Palluau F; Mirabel P; Millet M Environ Monit Assess; 2007 Apr; 127(1-3):177-87. PubMed ID: 16897502 [TBL] [Abstract][Full Text] [Related]
10. How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Vallat A; Gu H; Dorn S Phytochemistry; 2005 Jul; 66(13):1540-50. PubMed ID: 15949824 [TBL] [Abstract][Full Text] [Related]
11. Measurements of biogenic hydrocarbons and carbonyl compounds emitted by trees from temperate warm Atlantic rainforest, Brazil. Carvalho LR; Vasconcellos PC; Mantovani W; Pool CS; Pisani SO J Environ Monit; 2005 May; 7(5):493-9. PubMed ID: 15877172 [TBL] [Abstract][Full Text] [Related]
12. Origins of n-alkanes, carbonyl compounds and molecular biomarkers in atmospheric fine and coarse particles of Athens, Greece. Andreou G; Rapsomanikis S Sci Total Environ; 2009 Oct; 407(21):5750-60. PubMed ID: 19692113 [TBL] [Abstract][Full Text] [Related]
13. Stability assessment of gas mixtures containing monoterpenes in varying cylinder materials and treatments. Rhoderick GC; Lin J Anal Chem; 2013 May; 85(9):4675-85. PubMed ID: 23550692 [TBL] [Abstract][Full Text] [Related]
14. Distribution of n-alkanes in the Northern Italy aerosols: data handling of GC-MS signals for homologous series characterization. Pietrogrande MC; Mercuriali M; Perrone MG; Ferrero L; Sangiorgi G; Bolzacchini E Environ Sci Technol; 2010 Jun; 44(11):4232-40. PubMed ID: 20450188 [TBL] [Abstract][Full Text] [Related]
15. Development and application of a sensitive method to determine concentrations of acrolein and other carbonyls in ambient air. Cahill TM; Charles MJ; Seaman VY; Res Rep Health Eff Inst; 2010 May; (149):3-46. PubMed ID: 20608023 [TBL] [Abstract][Full Text] [Related]
16. Field and laboratory emission cell automation and control system for investigating surface chemistry reactions. Flemmer MM; Ham JE; Wells JR Rev Sci Instrum; 2007 Jan; 78(1):014101. PubMed ID: 17503934 [TBL] [Abstract][Full Text] [Related]
17. Pinonaldehyde and some other organics in rain and snow in central Japan. Satsumabayashi H; Nishizawa H; Yokouchi Y; Ueda H Chemosphere; 2001 Nov; 45(6-7):887-91. PubMed ID: 11695610 [TBL] [Abstract][Full Text] [Related]
18. Decomposition of Terpenes by Ozone during Sampling on Tenax. Calogirou A; Larsen BR; Brussol C; Duane M; Kotzias D Anal Chem; 1996 May; 68(9):1499-506. PubMed ID: 21619114 [TBL] [Abstract][Full Text] [Related]
19. Airborne carbonyls from motor vehicle emissions in two highway tunnels. Grosjean D; Grosjean E Res Rep Health Eff Inst; 2002 Jan; (107):57-78; discussion 79-92. PubMed ID: 11954678 [TBL] [Abstract][Full Text] [Related]
20. A sensitive method for the quantification of acrolein and other volatile carbonyls in ambient air. Seaman VY; Charles MJ; Cahill TM Anal Chem; 2006 Apr; 78(7):2405-12. PubMed ID: 16579627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]