These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 21327251)
1. On-demand microfluidic droplet manipulation using hydrophobic ferrofluid as a continuous-phase. Zhang K; Liang Q; Ai X; Hu P; Wang Y; Luo G Lab Chip; 2011 Apr; 11(7):1271-5. PubMed ID: 21327251 [TBL] [Abstract][Full Text] [Related]
2. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase. Chae SK; Lee CH; Lee SH; Kim TS; Kang JY Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972 [TBL] [Abstract][Full Text] [Related]
3. Novel combination of hydrophilic/hydrophobic surface for large wettability difference and its application to liquid manipulation. Kobayashi T; Shimizu K; Kaizuma Y; Konishi S Lab Chip; 2011 Feb; 11(4):639-44. PubMed ID: 21127789 [TBL] [Abstract][Full Text] [Related]
4. Flow-focusing generation of monodisperse water droplets wrapped by ionic liquid on microfluidic chips: from plug to sphere. Wang WH; Zhang ZL; Xie YN; Wang L; Yi S; Liu K; Liu J; Pang DW; Zhao XZ Langmuir; 2007 Nov; 23(23):11924-31. PubMed ID: 17918864 [TBL] [Abstract][Full Text] [Related]
5. On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Wang W; Yang C; Li CM Lab Chip; 2009 Jun; 9(11):1504-6. PubMed ID: 19458854 [TBL] [Abstract][Full Text] [Related]
6. Manipulation of gel emulsions by variable microchannel geometry. Surenjav E; Priest C; Herminghaus S; Seemann R Lab Chip; 2009 Jan; 9(2):325-30. PubMed ID: 19107292 [TBL] [Abstract][Full Text] [Related]
7. A 3D easily-assembled Micro-Cross for droplet generation. Wu P; Wang Y; Luo Z; Li Y; Li M; He L Lab Chip; 2014 Feb; 14(4):795-8. PubMed ID: 24362554 [TBL] [Abstract][Full Text] [Related]
8. Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control. Draper MC; Crick CR; Orlickaite V; Turek VA; Parkin IP; Edel JB Anal Chem; 2013 Jun; 85(11):5405-10. PubMed ID: 23627493 [TBL] [Abstract][Full Text] [Related]
9. Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays. Fradet E; McDougall C; Abbyad P; Dangla R; McGloin D; Baroud CN Lab Chip; 2011 Dec; 11(24):4228-34. PubMed ID: 22045291 [TBL] [Abstract][Full Text] [Related]
10. On-demand droplet release for droplet-based microfluidic system. Wang W; Yang C; Liu Y; Li CM Lab Chip; 2010 Mar; 10(5):559-62. PubMed ID: 20162230 [TBL] [Abstract][Full Text] [Related]
11. A microdroplet-based shift register. Zagnoni M; Cooper JM Lab Chip; 2010 Nov; 10(22):3069-73. PubMed ID: 20856984 [TBL] [Abstract][Full Text] [Related]
12. Electrical control of individual droplet breaking and droplet contents extraction. Zeng S; Pan X; Zhang Q; Lin B; Qin J Anal Chem; 2011 Mar; 83(6):2083-9. PubMed ID: 21338060 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic selective concentration of microdroplet contents by spontaneous emulsification. Fukuyama M; Hibara A Anal Chem; 2015 Apr; 87(7):3562-5. PubMed ID: 25760305 [TBL] [Abstract][Full Text] [Related]
14. Electrocoalescence mechanisms of microdroplets using localized electric fields in microfluidic channels. Zagnoni M; Le Lain G; Cooper JM Langmuir; 2010 Sep; 26(18):14443-9. PubMed ID: 20731333 [TBL] [Abstract][Full Text] [Related]
15. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel. Shui L; van den Berg A; Eijkel JC Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661 [TBL] [Abstract][Full Text] [Related]
16. An inkjet-printed microfluidic device for liquid-liquid extraction. Watanabe M Analyst; 2011 Apr; 136(7):1420-4. PubMed ID: 21290076 [TBL] [Abstract][Full Text] [Related]
17. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device. Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890 [TBL] [Abstract][Full Text] [Related]
18. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel. Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185 [TBL] [Abstract][Full Text] [Related]
19. Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Gao R; Choi N; Chang SI; Kang SH; Song JM; Cho SI; Lim DW; Choo J Anal Chim Acta; 2010 Nov; 681(1-2):87-91. PubMed ID: 21035607 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic fabrication of stable nanoparticle-shelled bubbles. Lee MH; Prasad V; Lee D Langmuir; 2010 Feb; 26(4):2227-30. PubMed ID: 20039657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]