These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21327253)

  • 41. Microfluidic single cell analysis: from promise to practice.
    Lecault V; White AK; Singhal A; Hansen CL
    Curr Opin Chem Biol; 2012 Aug; 16(3-4):381-90. PubMed ID: 22525493
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrasonic manipulation of single cells.
    Wiklund M; Onfelt B
    Methods Mol Biol; 2012; 853():177-96. PubMed ID: 22323148
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On-chip integrated labelling, transport and detection of tumour cells.
    Woods J; Docker PT; Dyer CE; Haswell SJ; Greenman J
    Electrophoresis; 2011 Nov; 32(22):3188-95. PubMed ID: 22025027
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Label-free electrical discrimination of cells at normal, apoptotic and necrotic status with a microfluidic device.
    Gou HL; Zhang XB; Bao N; Xu JJ; Xia XH; Chen HY
    J Chromatogr A; 2011 Aug; 1218(33):5725-9. PubMed ID: 21774939
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo O2 measurement inside single photosynthetic cells.
    Bai SJ; Ryu W; Fasching RJ; Grossman AR; Prinz FB
    Biotechnol Lett; 2011 Aug; 33(8):1675-81. PubMed ID: 21476096
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device.
    Chen Q; Wu J; Zhang Y; Lin Z; Lin JM
    Lab Chip; 2012 Dec; 12(24):5180-5. PubMed ID: 23108418
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip.
    Lin CH; Lee DC; Chang HC; Chiu IM; Hsu CH
    Anal Chem; 2013 Dec; 85(24):11920-8. PubMed ID: 24228937
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Real-time detection and monitoring of the drug resistance of single myeloid leukemia cells by diffused total internal reflection.
    Liang L; Jin YX; Zhu XQ; Zhou FL; Yang Y
    Lab Chip; 2018 May; 18(10):1422-1429. PubMed ID: 29713720
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A microfluidic digital single-cell assay for the evaluation of anticancer drugs.
    Wang Y; Tang X; Feng X; Liu C; Chen P; Chen D; Liu BF
    Anal Bioanal Chem; 2015 Feb; 407(4):1139-48. PubMed ID: 25433683
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Utilizing inherent fluorescence of therapeutics to analyze real-time uptake and multi-parametric effector kinetics.
    Wiench B; Eichhorn T; Korn B; Paulsen M; Efferth T
    Methods; 2012 Jul; 57(3):376-82. PubMed ID: 22326879
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single HeLa and MCF-7 cell measurement using minimized impedance spectroscopy and microfluidic device.
    Wang MH; Kao MF; Jang LS
    Rev Sci Instrum; 2011 Jun; 82(6):064302. PubMed ID: 21721710
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Centrifugation-Assisted Single-Cell Trapping in a Truncated Cone-Shaped Microwell Array Chip for the Real-Time Observation of Cellular Apoptosis.
    Huang L; Chen Y; Chen Y; Wu H
    Anal Chem; 2015 Dec; 87(24):12169-76. PubMed ID: 26579559
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantum dots-based immunofluorescent microfluidic chip for the analysis of glycan expression at single-cells.
    Cao JT; Chen ZX; Hao XY; Zhang PH; Zhu JJ
    Anal Chem; 2012 Nov; 84(22):10097-104. PubMed ID: 23078080
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Parallel probing of drug uptake of single cancer cells on a microfluidic device.
    Yang Y; Le Gac S; Terstappen LW; Rho HS
    Electrophoresis; 2018 Feb; 39(3):548-556. PubMed ID: 29193175
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dielectrophoretic trapping of single leukemic cells using the conventional and compact optical measurement systems.
    Sharifi Noghabi H; Soo M; Khamenehfar A; Li PCH
    Electrophoresis; 2019 May; 40(10):1478-1485. PubMed ID: 30701577
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Research highlights: microfluidic-enabled single-cell epigenetics.
    Dhar M; Khojah R; Tay A; Di Carlo D
    Lab Chip; 2015 Nov; 15(21):4109-13. PubMed ID: 26405849
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Making a big thing of a small cell--recent advances in single cell analysis.
    Galler K; Bräutigam K; Große C; Popp J; Neugebauer U
    Analyst; 2014 Mar; 139(6):1237-73. PubMed ID: 24495980
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Digital microfluidics for time-resolved cytotoxicity studies on single non-adherent yeast cells.
    Kumar PT; Vriens K; Cornaglia M; Gijs M; Kokalj T; Thevissen K; Geeraerd A; Cammue BP; Puers R; Lammertyn J
    Lab Chip; 2015 Apr; 15(8):1852-60. PubMed ID: 25710603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Construction of single-cell arrays and assay of cell drug resistance in an integrated microfluidic platform.
    Pang L; Liu W; Tian C; Xu J; Li T; Chen SW; Wang J
    Lab Chip; 2016 Nov; 16(23):4612-4620. PubMed ID: 27785515
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bubble Jet agent release cartridge for chemical single cell stimulation.
    Wangler N; Welsche M; Blazek M; Blessing M; Vervliet-Scheebaum M; Reski R; Müller C; Reinecke H; Steigert J; Roth G; Zengerle R; Paust N
    Biomed Microdevices; 2013 Feb; 15(1):1-8. PubMed ID: 22833153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.