These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21327371)

  • 41. The influence of object similarity and orientation on object-based cueing.
    Hein E; Blaschke S; Rolke B
    Atten Percept Psychophys; 2017 Jan; 79(1):63-77. PubMed ID: 27797008
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Upside-down: Perceived space affects object-based attention.
    Papenmeier F; Meyerhoff HS; Brockhoff A; Jahn G; Huff M
    J Exp Psychol Hum Percept Perform; 2017 Jul; 43(7):1269-1274. PubMed ID: 28639824
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distinct roles of theta and alpha oscillations in the involuntary capture of goal-directed attention.
    Harris AM; Dux PE; Jones CN; Mattingley JB
    Neuroimage; 2017 May; 152():171-183. PubMed ID: 28274832
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recognition of objects displayed with incomplete sets of discrete boundary dots.
    Greene E
    Percept Mot Skills; 2007 Jun; 104(3 Pt 2):1043-59. PubMed ID: 17879637
    [TBL] [Abstract][Full Text] [Related]  

  • 45. How to Create Objects With Your Mind: From Object-Based Attention to Attention-Based Objects.
    Ongchoco JDK; Scholl BJ
    Psychol Sci; 2019 Nov; 30(11):1648-1655. PubMed ID: 31634050
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The importance of context information for the spatial specificity of gaze cueing.
    Wiese E; Zwickel J; Müller HJ
    Atten Percept Psychophys; 2013 Jul; 75(5):967-82. PubMed ID: 23504713
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The influence of motion-defined form on the perception of spatially-defined form.
    Rainville SJ; Wilson HR
    Vision Res; 2004 May; 44(11):1065-77. PubMed ID: 15050812
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The location but not the attributes of visual cues are automatically encoded into working memory.
    Chen H; Wyble B
    Vision Res; 2015 Feb; 107():76-85. PubMed ID: 25490435
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microsaccadic modulation of response times in spatial attention tasks.
    Kliegl R; Rolfs M; Laubrock J; Engbert R
    Psychol Res; 2009 Mar; 73(2):136-46. PubMed ID: 19066951
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of shape complexity in the detection of closed contours.
    Wilder J; Feldman J; Singh M
    Vision Res; 2016 Sep; 126():220-231. PubMed ID: 26505685
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differentiating spatial and object-based effects on attention: an event-related brain potential study with peripheral cueing.
    He X; Humphreys G; Fan S; Chen L; Han S
    Brain Res; 2008 Dec; 1245():116-25. PubMed ID: 18955038
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cortical activity related to cue-invariant shape perception in humans.
    Okusa T; Kakigi R; Osaka N
    Neuroscience; 2000; 98(4):615-24. PubMed ID: 10891605
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visuospatial attention shifts by gaze and arrow cues: an ERP study.
    Hietanen JK; Leppänen JM; Nummenmaa L; Astikainen P
    Brain Res; 2008 Jun; 1215():123-36. PubMed ID: 18485332
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shifts of visuospatial attention do not cause the spatial distortions of the Roelofs effect.
    Lester BD; Dassonville P
    J Vis; 2013 Oct; 13(12):. PubMed ID: 24105425
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Depth release of illusory contour shape in the Ehrenstein grid.
    Watanabe T; Nanez JE; Moreno MA
    Vision Res; 1995 Oct; 35(20):2845-51. PubMed ID: 8533324
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Object-based selection operating on a spatial representation made salient by dimensional segmentation mechanisms: a re-investigation of Egly and Homa (1984).
    Müller HJ; O'Grady RB
    Psychol Res; 2009 Mar; 73(2):271-86. PubMed ID: 19107513
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Object Selection by Automatic Spreading of Top-Down Attentional Signals in V1.
    Ekman M; Roelfsema PR; de Lange FP
    J Neurosci; 2020 Nov; 40(48):9250-9259. PubMed ID: 33087475
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An attention account of neural priming.
    Thakral PP; Jacobs CM; Slotnick SD
    Memory; 2017 Jul; 25(6):856-864. PubMed ID: 27666665
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A functional MRI study of preparatory signals for spatial location and objects.
    Corbetta M; Tansy AP; Stanley CM; Astafiev SV; Snyder AZ; Shulman GL
    Neuropsychologia; 2005; 43(14):2041-56. PubMed ID: 16243051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.