These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2132747)

  • 1. Pharmacological and physiological effects of magnesium on experimental traumatic brain injury.
    Vink R; McIntosh TK
    Magnes Res; 1990 Sep; 3(3):163-9. PubMed ID: 2132747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnesium and brain trauma.
    Vink R
    Magnes Trace Elem; 1991-1992; 10(1):1-10. PubMed ID: 1814317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of intracellular free magnesium in central nervous system injury.
    Vink R; Cernak I
    Front Biosci; 2000 Aug; 5():D656-65. PubMed ID: 10922299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of magnesium, MK-801 and combination of magnesium and MK-801 on blood-brain barrier permeability and brain edema after experimental traumatic diffuse brain injury.
    Imer M; Omay B; Uzunkol A; Erdem T; Sabanci PA; Karasu A; Albayrak SB; Sencer A; Hepgul K; Kaya M
    Neurol Res; 2009 Nov; 31(9):977-81. PubMed ID: 19215660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacologic strategies in the treatment of experimental brain injury.
    McIntosh TK
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S201-9. PubMed ID: 1588609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of magnesium in traumatic brain injury.
    van den Heuvel C; Vink R
    Clin Calcium; 2004 Aug; 14(8):9-14. PubMed ID: 15577090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are the transient receptor potential melastatin (TRPM) channels important in magnesium homeostasis following traumatic brain injury?
    Cook NL; Van Den Heuvel C; Vink R
    Magnes Res; 2009 Dec; 22(4):225-34. PubMed ID: 20228000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apoptotic change in response to magnesium therapy after moderate diffuse axonal injury in rats.
    Park CO; Hyun DK
    Yonsei Med J; 2004 Oct; 45(5):908-16. PubMed ID: 15515203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death?
    Sullivan PG; Rabchevsky AG; Waldmeier PC; Springer JE
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):231-9. PubMed ID: 15573402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State of the art of new data on the role of magnesium in brain injury: clinical interest of measurements of total and ionized magnesium.
    Ozgurtas T; Kahraman S
    Magnes Res; 2004 Dec; 17(4):327-34. PubMed ID: 15726908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonists of excitatory amino acids and endogenous opioid peptides in the treatment of experimental central nervous system injury.
    Gentile NT; McIntosh TK
    Ann Emerg Med; 1993 Jun; 22(6):1028-34. PubMed ID: 8099259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnesium therapy and recovery of function in experimental models of brain injury and neurodegenerative disease.
    Hoane MR
    Clin Calcium; 2004 Aug; 14(8):65-70. PubMed ID: 15577099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential pharmacotherapy with magnesium chloride and basic fibroblast growth factor after fluid percussion brain injury results in less neuromotor efficacy than that achieved with magnesium alone.
    Guluma KZ; Saatman KE; Brown A; Raghupathi R; McIntosh TK
    J Neurotrauma; 1999 Apr; 16(4):311-21. PubMed ID: 10225217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain free magnesium concentration is predictive of motor outcome following traumatic axonal brain injury in rats.
    Heath DL; Vink R
    Magnes Res; 1999 Dec; 12(4):269-77. PubMed ID: 10612084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot study to determine the hemodynamic safety and feasibility of magnesium sulfate infusion in children with severe traumatic brain injury.
    Natale JE; Guerguerian AM; Joseph JG; McCarter R; Shao C; Slomine B; Christensen J; Johnston MV; Shaffner DH
    Pediatr Crit Care Med; 2007 Jan; 8(1):1-9. PubMed ID: 17251875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention.
    Kumar A; Loane DJ
    Brain Behav Immun; 2012 Nov; 26(8):1191-201. PubMed ID: 22728326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erythropoietin attenuates post-traumatic injury in organotypic hippocampal slices.
    Adembri C; Bechi A; Meli E; Gramigni E; Venturi L; Moroni F; De Gaudio AR; Pellegrini-Giampietro DE
    J Neurotrauma; 2004 Aug; 21(8):1103-12. PubMed ID: 15319009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnesium neuroprotection is limited in humans with acute brain injury.
    McKee JA; Brewer RP; Macy GE; Borel CO; Reynolds JD; Warner DS
    Neurocrit Care; 2005; 2(3):342-51. PubMed ID: 16159086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial.
    Temkin NR; Anderson GD; Winn HR; Ellenbogen RG; Britz GW; Schuster J; Lucas T; Newell DW; Mansfield PN; Machamer JE; Barber J; Dikmen SS
    Lancet Neurol; 2007 Jan; 6(1):29-38. PubMed ID: 17166799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacologic therapy for traumatic brain injury: experimental approaches.
    Smith DH; Casey K; McIntosh TK
    New Horiz; 1995 Aug; 3(3):562-72. PubMed ID: 7496768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.