These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21327814)

  • 1. A fresh look at the nucleus-endplate region: new evidence for significant structural integration.
    Wade KR; Robertson PA; Broom ND
    Eur Spine J; 2011 Aug; 20(8):1225-32. PubMed ID: 21327814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On how nucleus-endplate integration is achieved at the fibrillar level in the ovine lumbar disc.
    Wade KR; Robertson PA; Broom ND
    J Anat; 2012 Jul; 221(1):39-46. PubMed ID: 22533741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the extent and nature of nucleus-annulus integration.
    Wade KR; Robertson PA; Broom ND
    Spine (Phila Pa 1976); 2012 Oct; 37(21):1826-33. PubMed ID: 22695276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of maturity on nucleus-endplate integration in the ovine lumbar spine.
    Wade KR; Robertson PA; Broom ND
    Eur Spine J; 2014 Apr; 23(4):732-44. PubMed ID: 24554333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multiscale structural investigation of the annulus-endplate anchorage system and its mechanisms of failure.
    Rodrigues SA; Thambyah A; Broom ND
    Spine J; 2015 Mar; 15(3):405-16. PubMed ID: 25554584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion.
    Wade KR; Robertson PA; Thambyah A; Broom ND
    Spine (Phila Pa 1976); 2014 Jun; 39(13):1018-28. PubMed ID: 24503692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New evidence for structural integration across the cartilage-vertebral endplate junction and its relation to herniation.
    Sapiee NH; Thambyah A; Robertson PA; Broom ND
    Spine J; 2019 Mar; 19(3):532-544. PubMed ID: 30176283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How maturity influences annulus-endplate integration in the ovine intervertebral disc: a micro- and ultra-structural study.
    Rodrigues SA; Thambyah A; Broom ND
    J Anat; 2017 Jan; 230(1):152-164. PubMed ID: 27535364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The elastic fibre network of the human lumbar anulus fibrosus: architecture, mechanical function and potential role in the progression of intervertebral disc degeneration.
    Smith LJ; Fazzalari NL
    Eur Spine J; 2009 Apr; 18(4):439-48. PubMed ID: 19263091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of torsion on disc herniation when combined with flexion.
    Veres SP; Robertson PA; Broom ND
    Eur Spine J; 2010 Sep; 19(9):1468-78. PubMed ID: 20437184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ISSLS Prize Winner: Vibration Really Does Disrupt the Disc: A Microanatomical Investigation.
    Wade KR; Schollum ML; Robertson PA; Thambyah A; Broom ND
    Spine (Phila Pa 1976); 2016 Aug; 41(15):1185-1198. PubMed ID: 27043193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of compressive loading rate on annulus fibrosus strength following endplate fracture.
    McMorran JG; Gregory DE
    Med Eng Phys; 2021 Jul; 93():17-26. PubMed ID: 34154771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensile properties of nondegenerate human lumbar anulus fibrosus.
    Ebara S; Iatridis JC; Setton LA; Foster RJ; Mow VC; Weidenbaum M
    Spine (Phila Pa 1976); 1996 Feb; 21(4):452-61. PubMed ID: 8658249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of material properties on the mechanical behaviour of the L5-S1 intervertebral disc in compression: a nonlinear finite element study.
    Rao AA; Dumas GA
    J Biomed Eng; 1991 Mar; 13(2):139-51. PubMed ID: 2033950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posterolateral Disc Prolapse in Flexion Initiated by Lateral Inner Annular Failure: An Investigation of the Herniation Pathway.
    van Heeswijk VM; Thambyah A; Robertson PA; Broom ND
    Spine (Phila Pa 1976); 2017 Nov; 42(21):1604-1613. PubMed ID: 28368980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical effects of cage positions and facet fixation on initial stability of the anterior lumbar interbody fusion motion segment.
    Hueng DY; Chung TT; Chuang WH; Hsu CP; Chou KN; Lin SC
    Spine (Phila Pa 1976); 2014 Jun; 39(13):E770-6. PubMed ID: 24732834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Surprise" Loading in Flexion Increases the Risk of Disc Herniation Due to Annulus-Endplate Junction Failure: A Mechanical and Microstructural Investigation.
    Wade KR; Robertson PA; Thambyah A; Broom ND
    Spine (Phila Pa 1976); 2015 Jun; 40(12):891-901. PubMed ID: 25803222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mineralization and collagen orientation throughout aging at the vertebral endplate in the human lumbar spine.
    Paietta RC; Burger EL; Ferguson VL
    J Struct Biol; 2013 Nov; 184(2):310-20. PubMed ID: 23999190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal sections and regional variations in the mechanical properties of the annulus fibrosus subjected to tensile loading.
    Zak M; Pezowicz C
    Acta Bioeng Biomech; 2013; 15(1):51-9. PubMed ID: 23957617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function relationships at the human spinal disc-vertebra interface.
    Berg-Johansen B; Fields AJ; Liebenberg EC; Li A; Lotz JC
    J Orthop Res; 2018 Jan; 36(1):192-201. PubMed ID: 28590060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.