These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21327946)

  • 1. Fluid dynamics of heart development.
    Santhanakrishnan A; Miller LA
    Cell Biochem Biophys; 2011 Sep; 61(1):1-22. PubMed ID: 21327946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid dynamics of ventricular filling in the embryonic heart.
    Miller LA
    Cell Biochem Biophys; 2011 Sep; 61(1):33-45. PubMed ID: 21336589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heartbeat-driven pericardiac fluid forces contribute to epicardium morphogenesis.
    Peralta M; Steed E; Harlepp S; González-Rosa JM; Monduc F; Ariza-Cosano A; Cortés A; Rayón T; Gómez-Skarmeta JL; Zapata A; Vermot J; Mercader N
    Curr Biol; 2013 Sep; 23(18):1726-35. PubMed ID: 23954432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow within models of the vertebrate embryonic heart.
    Santhanakrishnan A; Nguyen N; Cox JG; Miller LA
    J Theor Biol; 2009 Aug; 259(3):449-61. PubMed ID: 19410580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic shear stress patterns predict the orientation of convergent tissue movements in the embryonic heart.
    Boselli F; Steed E; Freund JB; Vermot J
    Development; 2017 Dec; 144(23):4322-4327. PubMed ID: 29183943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanotransduction of hemodynamic forces regulates organogenesis].
    Sidi S; Rosa FM
    Med Sci (Paris); 2004 May; 20(5):557-61. PubMed ID: 15190475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D modelling of fluid mechanics in the zebrafish embryonic heart.
    Foo YY; Pant S; Tay HS; Imangali N; Chen N; Winkler C; Yap CH
    Biomech Model Mechanobiol; 2020 Feb; 19(1):221-232. PubMed ID: 31446522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiology in phylogeny: modeling of mechanical driving forces in cardiac development.
    Grosberg A; Gharib M
    Heart Fail Clin; 2008 Jul; 4(3):247-59. PubMed ID: 18598978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient, three-dimensional flow field simulation through a mechanical, trileaflet heart valve prosthesis.
    Kaufmann TA; Linde T; Cuenca-Navalon E; Schmitz C; Hormes M; Schmitz-Rode T; Steinseifer U
    ASAIO J; 2011; 57(4):278-82. PubMed ID: 21642841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanics and function in heart morphogenesis.
    Bartman T; Hove J
    Dev Dyn; 2005 Jun; 233(2):373-81. PubMed ID: 15830382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Live imaging and modeling for shear stress quantification in the embryonic zebrafish heart.
    Boselli F; Vermot J
    Methods; 2016 Feb; 94():129-34. PubMed ID: 26390811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model.
    Groenendijk BC; Van der Heiden K; Hierck BP; Poelmann RE
    Physiology (Bethesda); 2007 Dec; 22():380-9. PubMed ID: 18073411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vortex Dynamics in Trabeculated Embryonic Ventricles.
    Battista NA; Douglas DR; Lane AN; Samsa LA; Liu J; Miller LA
    J Cardiovasc Dev Dis; 2019 Jan; 6(1):. PubMed ID: 30678229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis.
    Hove JR; Köster RW; Forouhar AS; Acevedo-Bolton G; Fraser SE; Gharib M
    Nature; 2003 Jan; 421(6919):172-7. PubMed ID: 12520305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of cardiac form and function in ectothermic sauropsids.
    Crossley DA; Burggren WW
    J Morphol; 2009 Nov; 270(11):1400-12. PubMed ID: 19551708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac chamber formation: development, genes, and evolution.
    Moorman AF; Christoffels VM
    Physiol Rev; 2003 Oct; 83(4):1223-67. PubMed ID: 14506305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces.
    Pedersen JA; Lichter S; Swartz MA
    J Biomech; 2010 Mar; 43(5):900-5. PubMed ID: 20006339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary cilia sensitize endothelial cells for fluid shear stress.
    Hierck BP; Van der Heiden K; Alkemade FE; Van de Pas S; Van Thienen JV; Groenendijk BC; Bax WH; Van der Laarse A; Deruiter MC; Horrevoets AJ; Poelmann RE
    Dev Dyn; 2008 Mar; 237(3):725-35. PubMed ID: 18297727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The embryonic vertebrate heart tube is a dynamic suction pump.
    Forouhar AS; Liebling M; Hickerson A; Nasiraei-Moghaddam A; Tsai HJ; Hove JR; Fraser SE; Dickinson ME; Gharib M
    Science; 2006 May; 312(5774):751-3. PubMed ID: 16675702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of competitive flow on wall shear stress in coronary surgery: computational fluid dynamics of a LIMA-LAD model.
    Nordgaard H; Swillens A; Nordhaug D; Kirkeby-Garstad I; Van Loo D; Vitale N; Segers P; Haaverstad R; Lovstakken L
    Cardiovasc Res; 2010 Dec; 88(3):512-9. PubMed ID: 20581004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.