These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 21328074)
1. Analysis of experimental errors in bioprocesses. 1. Production of lactobionic acid and sorbitol using the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of Zymomonas mobilis. Severo JB; Pinto JC; Ferraz HC; Alves TL J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1575-85. PubMed ID: 21328074 [TBL] [Abstract][Full Text] [Related]
2. Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study. Pedruzzi I; da Silva EA; Rodrigues AE Enzyme Microb Technol; 2011 Jul; 49(2):183-91. PubMed ID: 22112407 [TBL] [Abstract][Full Text] [Related]
3. Lactobionic acid production by glucose-fructose oxidoreductase from Zymomonas mobilis expressed in Escherichia coli. Goderska K; Juzwa W; Szwengiel A; Czarnecki Z Biotechnol Lett; 2015 Oct; 37(10):2047-53. PubMed ID: 26091863 [TBL] [Abstract][Full Text] [Related]
4. Reduction of xylose to xylitol catalyzed by glucose-fructose oxidoreductase from Zymomonas mobilis. Zhang X; Chen G; Liu W FEMS Microbiol Lett; 2009 Apr; 293(2):214-9. PubMed ID: 19239494 [TBL] [Abstract][Full Text] [Related]
5. Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis. Malvessi E; Carra S; Pasquali FC; Kern DB; da Silveira MM; Ayub MA J Ind Microbiol Biotechnol; 2013 Jan; 40(1):1-10. PubMed ID: 23053345 [TBL] [Abstract][Full Text] [Related]
6. Production of glucose-fructose oxidoreductase and ethanol by Zymomonas mobilis ATCC 29191 in medium containing corn steep liquor as a source of vitamins. Silveira MM; Wisbeck E; Hoch I; Jonas R Appl Microbiol Biotechnol; 2001 May; 55(4):442-5. PubMed ID: 11398924 [TBL] [Abstract][Full Text] [Related]
7. Export of the periplasmic NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis. Wiegert T; Sahm H; Sprenger GA Arch Microbiol; 1996 Jul; 166(1):32-41. PubMed ID: 8661942 [TBL] [Abstract][Full Text] [Related]
8. Biotransformation of pineapple juice sugars into dietetic derivatives by using a cell free oxidoreductase from Zymomonas mobilis together with commercial invertase. Aziz MG; Michlmayr H; Kulbe KD; Del Hierro AM Enzyme Microb Technol; 2011 Jan; 48(1):85-91. PubMed ID: 22112775 [TBL] [Abstract][Full Text] [Related]
9. Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. Loos H; Krämer R; Sahm H; Sprenger GA J Bacteriol; 1994 Dec; 176(24):7688-93. PubMed ID: 8002594 [TBL] [Abstract][Full Text] [Related]
10. Bioconversion of glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis. Silveira MM; Wisbeck E; Lemmel C; Erzinger G; da Costa JP; Bertasso M; Jonas R J Biotechnol; 1999 Oct; 75(2-3):99-103. PubMed ID: 10553651 [TBL] [Abstract][Full Text] [Related]
11. Glucose-fructose oxidoreductase, a periplasmic enzyme of Zymomonas mobilis, is active in its precursor form. Loos H; Sahm H; Sprenger GA FEMS Microbiol Lett; 1993 Mar; 107(2-3):293-8. PubMed ID: 8472911 [TBL] [Abstract][Full Text] [Related]
12. A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae. Wiebe MG; Nygård Y; Oja M; Andberg M; Ruohonen L; Koivula A; Penttilä M; Toivari M Appl Microbiol Biotechnol; 2015 Nov; 99(22):9439-47. PubMed ID: 26264136 [TBL] [Abstract][Full Text] [Related]
13. The biotechnological production of sorbitol. Silveira MM; Jonas R Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):400-8. PubMed ID: 12172602 [TBL] [Abstract][Full Text] [Related]
14. High lactobionic acid production by immobilized Zymomonas mobilis cells: a great step for large-scale process. Carra S; Rodrigues DC; Beraldo NMC; Folle AB; Delagustin MG; de Souza BC; Reginatto C; Polidoro TA; da Silveira MM; Bassani VL; Malvessi E Bioprocess Biosyst Eng; 2020 Jul; 43(7):1265-1276. PubMed ID: 32172349 [TBL] [Abstract][Full Text] [Related]
15. Control of the association state of tetrameric glucose-fructose oxidoreductase from Zymomonas mobilis as the rationale for stabilization of the enzyme in biochemical reactors. Fürlinger M; Satory M; Haltrich D; Kulbe KD; Nidetzky B J Biochem; 1998 Aug; 124(2):280-6. PubMed ID: 9685715 [TBL] [Abstract][Full Text] [Related]
16. Expression of the Zymomonas mobilis gfo gene or NADP-containing glucose:fructose oxidoreductase (GFOR) in Escherichia coli. Formation of enzymatically active preGFOR but lack of processing into a stable periplasmic protein. Wiegert T; Sahm H; Sprenger GA Eur J Biochem; 1997 Feb; 244(1):107-12. PubMed ID: 9063452 [TBL] [Abstract][Full Text] [Related]
17. Sorbitol production using recombinant Zymomonas mobilis strain. Liu C; Dong H; Zhong J; Ryu DD; Bao J J Biotechnol; 2010 Jul; 148(2-3):105-12. PubMed ID: 20438775 [TBL] [Abstract][Full Text] [Related]
18. Sorbitol can be produced not only chemically but also biotechnologically. Jonas R; Silveira MM Appl Biochem Biotechnol; 2004; 118(1-3):321-36. PubMed ID: 15304760 [TBL] [Abstract][Full Text] [Related]
19. The substitution of a single amino acid residue (Ser-116 --> Asp) alters NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis into a glucose dehydrogenase with dual coenzyme specificity. Wiegert T; Sahm H; Sprenger GA J Biol Chem; 1997 May; 272(20):13126-33. PubMed ID: 9148926 [TBL] [Abstract][Full Text] [Related]
20. The structure of glucose-fructose oxidoreductase from Zymomonas mobilis: an osmoprotective periplasmic enzyme containing non-dissociable NADP. Kingston RL; Scopes RK; Baker EN Structure; 1996 Dec; 4(12):1413-28. PubMed ID: 8994968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]