These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21328164)

  • 1. Development of finger-motion capturing device based on optical linear encoder.
    Li K; Chen IM; Yeo SH; Lim CK
    J Rehabil Res Dev; 2011; 48(1):69-82. PubMed ID: 21328164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Three-dimensional Finger Motion Measurement System of a Thumb and an Index Finger Without a Calibration Process.
    Park Y; Bae J
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32019125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The dynamics of motion sequences of the finger joints during fist closure].
    Mentzel M; Benlic A; Wachter NJ; Gulkin D; Bauknecht S; Gülke J
    Handchir Mikrochir Plast Chir; 2011 Jun; 43(3):147-54. PubMed ID: 21452110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Finger Joint Angles Based on Electromechanical Sensing of Wrist Shape.
    Kawaguchi J; Yoshimoto S; Kuroda Y; Oshiro O
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1409-1418. PubMed ID: 27845665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Case study on the effects of fit and material of sports gloves on hand performance.
    Yu A; Yick KL; Ng SP; Yip J
    Appl Ergon; 2019 Feb; 75():17-26. PubMed ID: 30509523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development and evaluation of an ergonomic glove.
    Muralidhar A; Bishu RR; Hallbeck MS
    Appl Ergon; 1999 Dec; 30(6):555-63. PubMed ID: 10693835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Reproducibility of measuring the finger joint angle with a sensory glove].
    Mentzel M; Hofmann F; Ebinger T; Jätzold B; Kinzl L; Wachter NJ
    Handchir Mikrochir Plast Chir; 2001 Jan; 33(1):59-63; discussion 63-4. PubMed ID: 11258036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of the linkage between the interphalangeal joints of the index finger. An in vivo study.
    Hahn P; Krimmer H; Hradetzky A; Lanz U
    J Hand Surg Br; 1995 Oct; 20(5):696-9. PubMed ID: 8543884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and validation of low-cost assistive glove for hand assessment and therapy during activity of daily living-focused robotic stroke therapy.
    Nathan DE; Johnson MJ; McGuire JR
    J Rehabil Res Dev; 2009; 46(5):587-602. PubMed ID: 19882493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
    Ben-Tzvi P; Ma Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of an optimal finger exoskeleton based on continuous joint angle estimation from EMG signals.
    Ngeo J; Tamei T; Shibata T; Orlando MF; Behera L; Saxena A; Dutta A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():338-41. PubMed ID: 24109693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretchable glove for accurate and robust hand pose reconstruction based on comprehensive motion data.
    Park M; Park T; Park S; Yoon SJ; Koo SH; Park YL
    Nat Commun; 2024 Jul; 15(1):5821. PubMed ID: 38987530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a fiber optic glove for semi-automated goniometric measurements.
    Wise S; Gardner W; Sabelman E; Valainis E; Wong Y; Glass K; Drace J; Rosen JM
    J Rehabil Res Dev; 1990; 27(4):411-24. PubMed ID: 2089151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of hand rehabilitation system for paralysis patient - universal design using wire-driven mechanism.
    Yamaura H; Matsushita K; Kato R; Yokoi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7122-5. PubMed ID: 19963950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability and Validity of Clinically Accessible Smart Glove Technologies to Measure Joint Range of Motion.
    Henderson J; Condell J; Connolly J; Kelly D; Curran K
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and evaluation of a low-cost sensor glove for assessment of human finger movements in neurophysiological settings.
    Gentner R; Classen J
    J Neurosci Methods; 2009 Mar; 178(1):138-47. PubMed ID: 19056422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Wearable Mechatronic Glove for Resistive Hand Therapy Exercises.
    Zhou Y; Desplenter T; Chinchalkar S; Trejos AL
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1097-1102. PubMed ID: 31374776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The initiation and sequence of digital joint motion. A three-dimensional motion analysis.
    Somia N; Rash GS; Wachowiak M; Gupta A
    J Hand Surg Br; 1998 Dec; 23(6):792-5. PubMed ID: 9888684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of an exoskeleton as a finger-joint angular sensor.
    Yihun Y; Rahman MS; Perez-Gracia A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4176-80. PubMed ID: 23366848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation.
    Biggar S; Yao W
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1071-1080. PubMed ID: 26829796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.