These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21328549)

  • 1. Remarkable improvement of the photocatalytic activity of Ga2O3 towards the overall splitting of H2O.
    Sakata Y; Matsuda Y; Nakagawa T; Yasunaga R; Imamura H; Teramura K
    ChemSusChem; 2011 Feb; 4(2):181-4. PubMed ID: 21328549
    [No Abstract]   [Full Text] [Related]  

  • 2. The effects of starting materials in the synthesis of (Ga(1-x)Znx)(N(1-x)O(x)) solid solution on its photocatalytic activity for overall water splitting under visible light.
    Hisatomi T; Maeda K; Lu D; Domen K
    ChemSusChem; 2009; 2(4):336-43. PubMed ID: 19107886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photodeposition of copper and chromia on gallium oxide: the role of co-catalysts in photocatalytic water splitting.
    Busser GW; Mei B; Pougin A; Strunk J; Gutkowski R; Schuhmann W; Willinger MG; Schlögl R; Muhler M
    ChemSusChem; 2014 Apr; 7(4):1030-4. PubMed ID: 24591306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Ga2O3-photocatalyzed and photochemical degradation of the Fipronil insecticide by UVC irradiation in mixed aqueous/organic media under an inert atmosphere.
    Hidaka H; Tsukamoto T; Mitsutsuka Y; Oyama T; Serpone N
    Photochem Photobiol Sci; 2015 May; 14(5):919-28. PubMed ID: 25722187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonadiabatic dynamics of positive charge during photocatalytic water splitting on GaN(10-10) surface: charge localization governs splitting efficiency.
    Akimov AV; Muckerman JT; Prezhdo OV
    J Am Chem Soc; 2013 Jun; 135(23):8682-91. PubMed ID: 23679683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting.
    Kibria MG; Zhao S; Chowdhury FA; Wang Q; Nguyen HP; Trudeau ML; Guo H; Mi Z
    Nat Commun; 2014 Apr; 5():3825. PubMed ID: 24781276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pH on the microstructure of β-Ga
    Liu J; Lu W; Zhong Q; Wu H; Li Y; Li L; Wang Z
    J Colloid Interface Sci; 2018 Jun; 519():255-262. PubMed ID: 29505987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient decomposition of benzene over a beta-Ga2O3 photocatalyst under ambient conditions.
    Hou Y; Wang X; Wu L; Ding Z; Fu X
    Environ Sci Technol; 2006 Sep; 40(18):5799-803. PubMed ID: 17007143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the deposition of hydrogen evolution sites on suspended semiconductor particles using on-line photocatalytic reforming of aqueous methanol solutions.
    Busser GW; Mei B; Muhler M
    ChemSusChem; 2012 Nov; 5(11):2200-6. PubMed ID: 23090922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A visible-light-sensitive water splitting photocatalyst composed of Rh3+ in a 4d6 electronic configuration, Rh3+-doped ZnGa2O4.
    Kumagai N; Ni L; Irie H
    Chem Commun (Camb); 2011 Feb; 47(6):1884-6. PubMed ID: 21132177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of mesoporous β-Ga2O3 nanorods using PEG as template: preparation, characterization and photocatalytic properties.
    Zhao W; Yang Y; Hao R; Liu F; Wang Y; Tan M; Tang J; Ren D; Zhao D
    J Hazard Mater; 2011 Sep; 192(3):1548-54. PubMed ID: 21767910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced graphene oxide/InGaZn mixed oxide nanocomposite photocatalysts for hydrogen production.
    Martha S; Padhi DK; Parida K
    ChemSusChem; 2014 Feb; 7(2):585-97. PubMed ID: 24127386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic decomposition of CCl4 on Zr-MCM-41.
    Chien YC; Wang HP; Liu SH; Hsiung TL; Tai HS; Peng CY
    J Hazard Mater; 2008 Mar; 151(2-3):461-4. PubMed ID: 17659831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of macroporous calcium carbonate/magnetite nanocomposites and their application in photocatalytic water splitting.
    Walsh D; Kim YY; Miyamoto A; Meldrum FC
    Small; 2011 Aug; 7(15):2168-72. PubMed ID: 21626686
    [No Abstract]   [Full Text] [Related]  

  • 15. Cadmium sulfide quantum dots supported on gallium and indium oxide for visible-light-driven hydrogen evolution from water.
    Pan YX; Zhuang H; Hong J; Fang Z; Liu H; Liu B; Huang Y; Xu R
    ChemSusChem; 2014 Sep; 7(9):2537-44. PubMed ID: 25045039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic water oxidation by molecular assemblies based on cobalt catalysts.
    Zhou X; Li F; Li H; Zhang B; Yu F; Sun L
    ChemSusChem; 2014 Sep; 7(9):2453-6. PubMed ID: 25111070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the similarity and dissimilarity between photocatalytic water splitting and photocatalytic degradation of pollutants.
    Pasternak S; Paz Y
    Chemphyschem; 2013 Jul; 14(10):2059-70. PubMed ID: 23754793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of alkaline earth metal ion dopants on photocatalytic water splitting by NaTaO(3) powder.
    Iwase A; Kato H; Kudo A
    ChemSusChem; 2009; 2(9):873-7. PubMed ID: 19731285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of distortion of metal-oxygen octahedra on photocatalytic water-splitting performance of RuO2-loaded niobium and tantalum phosphate bronzes.
    Nishiyama H; Kobayashi H; Inoue Y
    ChemSusChem; 2011 Feb; 4(2):208-15. PubMed ID: 21328551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous flow photocatalytic treatment integrated with separation of titanium dioxide on the removal of phenol in tap water.
    Suryaman D; Hasegawa K; Kagaya S; Yoshimura T
    J Hazard Mater; 2009 Nov; 171(1-3):318-22. PubMed ID: 19570607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.