These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 21328602)
1. An overview of techniques for linking high-dimensional molecular data to time-to-event endpoints by risk prediction models. Binder H; Porzelius C; Schumacher M Biom J; 2011 Mar; 53(2):170-89. PubMed ID: 21328602 [TBL] [Abstract][Full Text] [Related]
2. Boosting for high-dimensional time-to-event data with competing risks. Binder H; Allignol A; Schumacher M; Beyersmann J Bioinformatics; 2009 Apr; 25(7):890-6. PubMed ID: 19244389 [TBL] [Abstract][Full Text] [Related]
3. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Gui J; Li H Bioinformatics; 2005 Jul; 21(13):3001-8. PubMed ID: 15814556 [TBL] [Abstract][Full Text] [Related]
4. Assessment of survival prediction models based on microarray data. Schumacher M; Binder H; Gerds T Bioinformatics; 2007 Jul; 23(14):1768-74. PubMed ID: 17485430 [TBL] [Abstract][Full Text] [Related]
5. Coupled variable selection for regression modeling of complex treatment patterns in a clinical cancer registry. Schmidtmann I; Elsäßer A; Weinmann A; Binder H Stat Med; 2014 Dec; 33(30):5358-70. PubMed ID: 25345575 [TBL] [Abstract][Full Text] [Related]
7. Mixture classification model based on clinical markers for breast cancer prognosis. Zeng T; Liu J Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686 [TBL] [Abstract][Full Text] [Related]
9. Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models. Binder H; Schumacher M BMC Bioinformatics; 2008 Jan; 9():14. PubMed ID: 18186927 [TBL] [Abstract][Full Text] [Related]
10. Boosting proportional hazards models using smoothing splines, with applications to high-dimensional microarray data. Li H; Luan Y Bioinformatics; 2005 May; 21(10):2403-9. PubMed ID: 15713732 [TBL] [Abstract][Full Text] [Related]
11. Boosting method for nonlinear transformation models with censored survival data. Lu W; Li L Biostatistics; 2008 Oct; 9(4):658-67. PubMed ID: 18344565 [TBL] [Abstract][Full Text] [Related]
12. Adapting prediction error estimates for biased complexity selection in high-dimensional bootstrap samples. Binder H; Schumacher M Stat Appl Genet Mol Biol; 2008; 7(1):Article12. PubMed ID: 18384265 [TBL] [Abstract][Full Text] [Related]
13. An evaluation of resampling methods for assessment of survival risk prediction in high-dimensional settings. Subramanian J; Simon R Stat Med; 2011 Mar; 30(6):642-53. PubMed ID: 21337359 [TBL] [Abstract][Full Text] [Related]
14. Leveraging external knowledge on molecular interactions in classification methods for risk prediction of patients. Porzelius C; Johannes M; Binder H; Beissbarth T Biom J; 2011 Mar; 53(2):190-201. PubMed ID: 21328603 [TBL] [Abstract][Full Text] [Related]
15. High-dimensional Cox models: the choice of penalty as part of the model building process. Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132 [TBL] [Abstract][Full Text] [Related]
16. Identification of biomarkers for risk stratification of cardiovascular events using genetic algorithm with recursive local floating search. Zhou X; Wang H; Wang J; Wang Y; Hoehn G; Azok J; Brennan ML; Hazen SL; Li K; Chang SF; Wong ST Proteomics; 2009 Apr; 9(8):2286-94. PubMed ID: 19337989 [TBL] [Abstract][Full Text] [Related]
17. Support vector methods for survival analysis: a comparison between ranking and regression approaches. Van Belle V; Pelckmans K; Van Huffel S; Suykens JA Artif Intell Med; 2011 Oct; 53(2):107-18. PubMed ID: 21821401 [TBL] [Abstract][Full Text] [Related]