BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21328698)

  • 1. Aerobic oxidations catalyzed by colloidal nanogold.
    Tsukuda T; Tsunoyama H; Sakurai H
    Chem Asian J; 2011 Mar; 6(3):736-48. PubMed ID: 21328698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis.
    Tsunoyama H; Ichikuni N; Sakurai H; Tsukuda T
    J Am Chem Soc; 2009 May; 131(20):7086-93. PubMed ID: 19408934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water.
    Tsunoyama H; Sakurai H; Negishi Y; Tsukuda T
    J Am Chem Soc; 2005 Jul; 127(26):9374-5. PubMed ID: 15984857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-addition mechanism in the intramolecular hydroalkoxylation of alkenes catalyzed by PVP-stabilized nanogold.
    Kitahara H; Sakurai H
    Molecules; 2012 Mar; 17(3):2579-86. PubMed ID: 22388968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal gold nanoparticles as catalyst for carbon-carbon bond formation: application to aerobic homocoupling of phenylboronic acid in water.
    Tsunoyama H; Sakurai H; Ichikuni N; Negishi Y; Tsukuda T
    Langmuir; 2004 Dec; 20(26):11293-6. PubMed ID: 15595746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective aerobic oxidation of hydroxy compounds catalyzed by photoactivated ruthenium-salen complexes (selective catalytic aerobic oxidation).
    Irie R; Katsuki T
    Chem Rec; 2004; 4(2):96-109. PubMed ID: 15073877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient aerobic oxidation of alkenes over unsupported nanogold.
    Boualleg M; Guillois K; Istria B; Burel L; Veyre L; Basset JM; Thieuleux C; Caps V
    Chem Commun (Camb); 2010 Aug; 46(29):5361-3. PubMed ID: 20559599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative interception of the hydroamination pathway: a gold-catalyzed diamination of alkenes.
    Iglesias A; Muñiz K
    Chemistry; 2009 Oct; 15(40):10563-9. PubMed ID: 19746362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An atomic-level strategy for unraveling gold nanocatalysis from the perspective of Au(n)(SR)m nanoclusters.
    Zhu Y; Qian H; Jin R
    Chemistry; 2010 Oct; 16(37):11455-62. PubMed ID: 20715207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic oxidation of benzyl alcohols catalyzed by aryl substituted N-hydroxyphthalimides. Possible involvement of a charge-transfer complex.
    Annunziatini C; Gerini MF; Lanzalunga O; Lucarini M
    J Org Chem; 2004 May; 69(10):3431-8. PubMed ID: 15132553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramolecular hydroalkoxylation/cyclization of alkynyl alcohols mediated by lanthanide catalysts. Scope and reaction mechanism.
    Seo S; Yu X; Marks TJ
    J Am Chem Soc; 2009 Jan; 131(1):263-76. PubMed ID: 19086869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric aerobic oxidation of secondary alcohols catalyzed by poly(N-vinyl-2-pyrrolidone)-stabilized gold clusters modified with cyclodextrin derivatives.
    Hirano K; Takano S; Tsukuda T
    Chem Commun (Camb); 2019 Dec; 55(100):15033-15036. PubMed ID: 31729494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward understanding the origin of positive effects of ionic liquids on catalysis: formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids.
    Lee JW; Shin JY; Chun YS; Jang HB; Song CE; Lee SG
    Acc Chem Res; 2010 Jul; 43(7):985-94. PubMed ID: 20345123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold-catalyzed cyanosilylation reaction: homogeneous and heterogeneous pathways.
    Cho WK; Lee JK; Kang SM; Chi YS; Lee HS; Choi IS
    Chemistry; 2007; 13(22):6351-8. PubMed ID: 17492807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-Rich Gold Clusters Stabilized by Poly(vinylpyridines) as Robust and Active Oxidation Catalysts.
    Matsuo A; Hasegawa S; Takano S; Tsukuda T
    Langmuir; 2020 Jul; 36(27):7844-7849. PubMed ID: 32536166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between electrochemistry/mass spectrometry and cytochrome P450 catalyzed oxidation reactions.
    Jurva U; Wikström HV; Weidolf L; Bruins AP
    Rapid Commun Mass Spectrom; 2003; 17(8):800-10. PubMed ID: 12672134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scope, kinetics, and mechanistic aspects of aerobic oxidations catalyzed by ruthenium supported on alumina.
    Yamaguchi K; Mizuno N
    Chemistry; 2003 Sep; 9(18):4353-61. PubMed ID: 14502621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavins as organocatalysts for environmentally benign molecular transformations.
    Imada Y; Naota T
    Chem Rec; 2007; 7(6):354-61. PubMed ID: 18069686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-nanogold catalysis of carbon monoxide oxidative amination.
    Zhu B; Angelici RJ
    J Am Chem Soc; 2006 Nov; 128(45):14460-1. PubMed ID: 17090020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.