These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 21329425)

  • 1. How and why does the proteome respond to microgravity?
    Grimm D; Wise P; Lebert M; Richter P; Baatout S
    Expert Rev Proteomics; 2011 Feb; 8(1):13-27. PubMed ID: 21329425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function of the cytoskeleton in gravisensing during spaceflight.
    Hughes-Fulford M
    Adv Space Res; 2003; 32(8):1585-93. PubMed ID: 15002415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microgravity and bone cell mechanosensitivity.
    Klein-Nulend J; Bacabac RG; Veldhuijzen JP; Van Loon JJ
    Adv Space Res; 2003; 32(8):1551-9. PubMed ID: 15000126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of microgravity on cell cytoskeleton and embryogenesis.
    Crawford-Young SJ
    Int J Dev Biol; 2006; 50(2-3):183-91. PubMed ID: 16479487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is HSP70 upregulation crucial for cellular proliferative response in simulated microgravity?
    Cotrupi S; Maier JA
    J Gravit Physiol; 2004 Jul; 11(2):P173-6. PubMed ID: 16237827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Disruption of the microfilament cytoskeleton induced by simulated microgravity affects NO/NOS system of osteoblasts].
    Wang MT; Huang Z; Yang R; Su J; Mai YX; Zhou HC; Deng WM
    Nan Fang Yi Ke Da Xue Xue Bao; 2010 Jul; 30(7):1658-62. PubMed ID: 20650794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal transduction in T lymphocytes in microgravity.
    Cogoli A
    Gravit Space Biol Bull; 1997 Jun; 10(2):5-16. PubMed ID: 11540120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current knowledge about the impact of microgravity on the proteome.
    Strauch SM; Grimm D; Corydon TJ; Krüger M; Bauer J; Lebert M; Wise P; Infanger M; Richter P
    Expert Rev Proteomics; 2019 Jan; 16(1):5-16. PubMed ID: 30451542
    [No Abstract]   [Full Text] [Related]  

  • 9. Microgravity: the immune response and bone.
    Zayzafoon M; Meyers VE; McDonald JM
    Immunol Rev; 2005 Dec; 208():267-80. PubMed ID: 16313354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment.
    Rea G; Cristofaro F; Pani G; Pascucci B; Ghuge SA; Corsetto PA; Imbriani M; Visai L; Rizzo AM
    J Proteomics; 2016 Mar; 137():3-18. PubMed ID: 26571091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in gene expression and signal transduction in microgravity.
    Hughes-Fulford M
    J Gravit Physiol; 2001 Jul; 8(1):P1-4. PubMed ID: 12638602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of weightlessness on the human organism and mammalian cells.
    Pietsch J; Bauer J; Egli M; Infanger M; Wise P; Ulbrich C; Grimm D
    Curr Mol Med; 2011 Jul; 11(5):350-64. PubMed ID: 21568935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing and evaluation for astronaut extravehicular activity (EVA) operability.
    Shields N; King LC
    Hum Perf Extrem Environ; 1998 Sep; 3(1):145-9. PubMed ID: 12190075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blunt trauma and operative care in microgravity: a review of microgravity physiology and surgical investigations with implications for critical care and operative treatment in space.
    Kirkpatrick AW; Campbell MR; Novinkov OL; Goncharov IB; Kovachevich IV
    J Am Coll Surg; 1997 May; 184(5):441-53. PubMed ID: 9145063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulated microgravity decreases apoptosis in fetal fibroblasts.
    Beck M; Tabury K; Moreels M; Jacquet P; Van Oostveldt P; De Vos WH; Baatout S
    Int J Mol Med; 2012 Aug; 30(2):309-13. PubMed ID: 22614095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cells respond to space microgravity through cytoskeleton reorganization.
    Wu XT; Yang X; Tian R; Li YH; Wang CY; Fan YB; Sun LW
    FASEB J; 2022 Feb; 36(2):e22114. PubMed ID: 35076958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells.
    Infanger M; Kossmehl P; Shakibaei M; Bauer J; Kossmehl-Zorn S; Cogoli A; Curcio F; Oksche A; Wehland M; Kreutz R; Paul M; Grimm D
    Cell Tissue Res; 2006 May; 324(2):267-77. PubMed ID: 16432709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Space flight effects on bacterial physiology.
    Leys NM; Hendrickx L; De Boever P; Baatout S; Mergeay M
    J Biol Regul Homeost Agents; 2004; 18(2):193-9. PubMed ID: 15471227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manned interplanetary missions: prospective medical problems.
    Grigoriev AI; Svetaylo EN; Egorov AD
    Environ Med; 1998 Dec; 42(2):83-94. PubMed ID: 11542693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neocartilage formation in 1 g, simulated, and microgravity environments: implications for tissue engineering.
    Stamenković V; Keller G; Nesic D; Cogoli A; Grogan SP
    Tissue Eng Part A; 2010 May; 16(5):1729-36. PubMed ID: 20141387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.