These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 21329722)

  • 1. Development of auditory cortical synaptic receptive fields.
    Froemke RC; Jones BJ
    Neurosci Biobehav Rev; 2011 Nov; 35(10):2105-13. PubMed ID: 21329722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ongoing balance of cortical excitation and inhibition during early development.
    Xiong Y; Liu X; Han L; Yan J
    Neurosci Biobehav Rev; 2011 Nov; 35(10):2114-6. PubMed ID: 21334375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic mechanisms underlying auditory processing.
    Oswald AM; Schiff ML; Reyes AD
    Curr Opin Neurobiol; 2006 Aug; 16(4):371-6. PubMed ID: 16842988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectrotemporal dynamics of auditory cortical synaptic receptive field plasticity.
    Froemke RC; Martins AR
    Hear Res; 2011 Sep; 279(1-2):149-61. PubMed ID: 21426927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous white noise exposure during and after auditory critical period differentially alters bidirectional thalamocortical plasticity in rat auditory cortex in vivo.
    Speechley WJ; Hogsden JL; Dringenberg HC
    Eur J Neurosci; 2007 Nov; 26(9):2576-84. PubMed ID: 17970743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning up the developing auditory CNS.
    Sanes DH; Bao S
    Curr Opin Neurobiol; 2009 Apr; 19(2):188-99. PubMed ID: 19535241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Strengthening of Intracortical Excitatory Input Leads to Receptive Field Refinement during Auditory Cortical Development.
    Sun YJ; Liu BH; Tao HW; Zhang LI
    J Neurosci; 2019 Feb; 39(7):1195-1205. PubMed ID: 30587538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Complex Acoustic Environment during Early Development on the Responses of Auditory Cortex Neurons in Rats.
    Pysanenko K; Bureš Z; Lindovský J; Syka J
    Neuroscience; 2018 Feb; 371():221-228. PubMed ID: 29229554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine-tuning of pre-balanced excitation and inhibition during auditory cortical development.
    Sun YJ; Wu GK; Liu BH; Li P; Zhou M; Xiao Z; Tao HW; Zhang LI
    Nature; 2010 Jun; 465(7300):927-31. PubMed ID: 20559386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental sensory experience balances cortical excitation and inhibition.
    Dorrn AL; Yuan K; Barker AJ; Schreiner CE; Froemke RC
    Nature; 2010 Jun; 465(7300):932-6. PubMed ID: 20559387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balanced tone-evoked synaptic excitation and inhibition in mouse auditory cortex.
    Tan AY; Wehr M
    Neuroscience; 2009 Nov; 163(4):1302-15. PubMed ID: 19628023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of order-selectivity based on dynamic changes in the balance of excitation and inhibition produced by short-term synaptic plasticity.
    Goudar V; Buonomano DV
    J Neurophysiol; 2015 Jan; 113(2):509-23. PubMed ID: 25339707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A behavioral framework to guide research on central auditory development and plasticity.
    Sanes DH; Woolley SM
    Neuron; 2011 Dec; 72(6):912-29. PubMed ID: 22196328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential synaptic processing separates stationary from transient inputs to the auditory cortex.
    Atzori M; Lei S; Evans DI; Kanold PO; Phillips-Tansey E; McIntyre O; McBain CJ
    Nat Neurosci; 2001 Dec; 4(12):1230-7. PubMed ID: 11694887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presynaptic gating of postsynaptic synaptic plasticity: a plasticity filter in the adult auditory cortex.
    Blundon JA; Zakharenko SS
    Neuroscientist; 2013 Oct; 19(5):465-78. PubMed ID: 23558179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementary Inhibitory Weight Profiles Emerge from Plasticity and Allow Flexible Switching of Receptive Fields.
    Agnes EJ; Luppi AI; Vogels TP
    J Neurosci; 2020 Dec; 40(50):9634-9649. PubMed ID: 33168622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of the thalamocortical system towards sound-specific auditory plasticity.
    Liu X; Basavaraj S; Krishnan R; Yan J
    Neurosci Biobehav Rev; 2011 Nov; 35(10):2155-61. PubMed ID: 21349286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticofugal reorganization of the midbrain tonotopic map in mice.
    Yan J; Ehret G
    Neuroreport; 2001 Oct; 12(15):3313-6. PubMed ID: 11711877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extra-classical tuning predicts stimulus-dependent receptive fields in auditory neurons.
    Schneider DM; Woolley SM
    J Neurosci; 2011 Aug; 31(33):11867-78. PubMed ID: 21849547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterosynaptic Plasticity Determines the Set Point for Cortical Excitatory-Inhibitory Balance.
    Field RE; D'amour JA; Tremblay R; Miehl C; Rudy B; Gjorgjieva J; Froemke RC
    Neuron; 2020 Jun; 106(5):842-854.e4. PubMed ID: 32213321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.