These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21329752)

  • 1. Development of repetitive behavior in a mouse model: roles of indirect and striosomal basal ganglia pathways.
    Tanimura Y; King MA; Williams DK; Lewis MH
    Int J Dev Neurosci; 2011 Jun; 29(4):461-7. PubMed ID: 21329752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does environmental enrichment reduce repetitive motor behaviors? Neuronal activation and dendritic morphology in the indirect basal ganglia pathway of a mouse model.
    Bechard AR; Cacodcar N; King MA; Lewis MH
    Behav Brain Res; 2016 Feb; 299():122-31. PubMed ID: 26620495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indirect basal ganglia pathway mediation of repetitive behavior: attenuation by adenosine receptor agonists.
    Tanimura Y; Vaziri S; Lewis MH
    Behav Brain Res; 2010 Jun; 210(1):116-22. PubMed ID: 20178817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological targeting of striatal indirect pathway neurons improves subthalamic nucleus dysfunction and reduces repetitive behaviors in C58 mice.
    Muehlmann AM; Maletz S; King MA; Lewis MH
    Behav Brain Res; 2020 Aug; 391():112708. PubMed ID: 32461129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of repetitive motor behaviors in deer mice: Effects of environmental enrichment, repeated testing, and differential mediation by indirect basal ganglia pathway activation.
    Bechard AR; Bliznyuk N; Lewis MH
    Dev Psychobiol; 2017 Apr; 59(3):390-399. PubMed ID: 28181216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Procedural learning and cognitive flexibility in a mouse model of restricted, repetitive behaviour.
    Tanimura Y; Yang MC; Lewis MH
    Behav Brain Res; 2008 Jun; 189(2):250-6. PubMed ID: 18272239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subthalamic nucleus pathology contributes to repetitive behavior expression and is reversed by environmental enrichment.
    Lewis MH; Lindenmaier Z; Boswell K; Edington G; King MA; Muehlmann AM
    Genes Brain Behav; 2018 Nov; 17(8):e12468. PubMed ID: 29457676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Striatal opioid peptide content in an animal model of spontaneous stereotypic behavior.
    Presti MF; Lewis MH
    Behav Brain Res; 2005 Feb; 157(2):363-8. PubMed ID: 15639187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental enrichment: effects on stereotyped behavior and regional neuronal metabolic activity.
    Turner CA; Yang MC; Lewis MH
    Brain Res; 2002 May; 938(1-2):15-21. PubMed ID: 12031530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of repetitive behavior by co-administration of adenosine receptor agonists in C58 mice.
    Lewis MH; Rajpal H; Muehlmann AM
    Pharmacol Biochem Behav; 2019 Jun; 181():110-116. PubMed ID: 31054946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repetitive motor behavior: further characterization of development and temporal dynamics.
    Muehlmann AM; Bliznyuk N; Duerr I; Lewis MH
    Dev Psychobiol; 2015 Mar; 57(2):201-11. PubMed ID: 25631623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphetamine-induced sensitization and spontaneous stereotypy in deer mice.
    Tanimura Y; Ogoegbunam FC; Lewis MH
    Pharmacol Biochem Behav; 2009 Jun; 92(4):670-5. PubMed ID: 19324069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry.
    Joel D; Weiner I
    Brain Res Brain Res Rev; 1997 Feb; 23(1-2):62-78. PubMed ID: 9063587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective blockade of spontaneous motor stereotypy via intrastriatal pharmacological manipulation.
    Presti MF; Mikes HM; Lewis MH
    Pharmacol Biochem Behav; 2003 Mar; 74(4):833-9. PubMed ID: 12667897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Animal models of restricted repetitive behavior in autism.
    Lewis MH; Tanimura Y; Lee LW; Bodfish JW
    Behav Brain Res; 2007 Jan; 176(1):66-74. PubMed ID: 16997392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rodent model of spontaneous stereotypy: initial characterization of developmental, environmental, and neurobiological factors.
    Powell SB; Newman HA; Pendergast JF; Lewis MH
    Physiol Behav; 1999 Apr; 66(2):355-63. PubMed ID: 10336165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior-related alterations of striatal neurochemistry in a mouse model of stereotyped movement disorder.
    Presti MF; Watson CJ; Kennedy RT; Yang M; Lewis MH
    Pharmacol Biochem Behav; 2004 Mar; 77(3):501-7. PubMed ID: 15006460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Dopamine D
    Lewis MH; Primiani CT; Muehlmann AM
    J Pharmacol Exp Ther; 2019 Apr; 369(1):88-97. PubMed ID: 30745415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The disrupted basal ganglia and behavioural control: an integrative cross-domain perspective of spontaneous stereotypy.
    McBride SD; Parker MO
    Behav Brain Res; 2015 Jan; 276():45-58. PubMed ID: 25052167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peromyscus maniculatus bairdii as a naturalistic mammalian model of obsessive-compulsive disorder: current status and future challenges.
    Wolmarans W; Scheepers IM; Stein DJ; Harvey BH
    Metab Brain Dis; 2018 Apr; 33(2):443-455. PubMed ID: 29214602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.