These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 21329772)

  • 21. Model plant systems in salinity and drought stress proteomics studies: a perspective on Arabidopsis and Sorghum.
    Ngara R; Ndimba BK
    Plant Biol (Stuttg); 2014 Nov; 16(6):1029-32. PubMed ID: 25258177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera.
    Sun J; Peng X; Fan W; Tang M; Liu J; Shen S
    Gene; 2014 Feb; 535(2):140-9. PubMed ID: 24315817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in the plant proteome resulting from salt stress: toward the creation of salt-tolerant crops?
    Sobhanian H; Aghaei K; Komatsu S
    J Proteomics; 2011 Aug; 74(8):1323-37. PubMed ID: 21440686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: a current update.
    Sharma JK; Sihmar M; Santal AR; Singh NP
    Biotechnol Genet Eng Rev; 2019 Oct; 35(2):126-160. PubMed ID: 31478455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Heat-responsive mechanisms in plants revealed by proteomic analysis: A review].
    Liu JM; Zhao Q; Yin ZP; Xu CX; Wang QH; Dai SJ
    Ying Yong Sheng Tai Xue Bao; 2015 Aug; 26(8):2561-70. PubMed ID: 26685622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prerequisites, performance and profits of transcriptional profiling the abiotic stress response.
    Kilian J; Peschke F; Berendzen KW; Harter K; Wanke D
    Biochim Biophys Acta; 2012 Feb; 1819(2):166-75. PubMed ID: 22001611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PlantPReS: A database for plant proteome response to stress.
    Mousavi SA; Pouya FM; Ghaffari MR; Mirzaei M; Ghaffari A; Alikhani M; Ghareyazie M; Komatsu S; Haynes PA; Salekdeh GH
    J Proteomics; 2016 Jun; 143():69-72. PubMed ID: 26947550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coping with abiotic stress: proteome changes for crop improvement.
    Abreu IA; Farinha AP; Negrão S; Gonçalves N; Fonseca C; Rodrigues M; Batista R; Saibo NJ; Oliveira MM
    J Proteomics; 2013 Nov; 93():145-68. PubMed ID: 23886779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plant Responses to Nanoparticle Stress.
    Hossain Z; Mustafa G; Komatsu S
    Int J Mol Sci; 2015 Nov; 16(11):26644-53. PubMed ID: 26561803
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lactate Dehydrogenase Superfamily in Rice and
    Chatterjee Y; Bhowal B; Gupta KJ; Pareek A; Singla-Pareek SL
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology.
    Tang X; Mu X; Shao H; Wang H; Brestic M
    Crit Rev Biotechnol; 2015; 35(4):425-37. PubMed ID: 24738851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein and Proteome Atlas for Plants under Stresses: New Highlights and Ways for Integrated Omics in Post-Genomics Era.
    Wang X
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31640274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Advances in plant proteomics. II. Application of proteome techniques to plant biology research].
    Ruan SL; Ma HS; Wang SH; Xin Y; Qian LH; Tong JX; Zhao HP; Wang J
    Yi Chuan; 2006 Dec; 28(12):1633-48. PubMed ID: 17138554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A focus on natural variation for abiotic constraints response in the model species Arabidopsis thaliana.
    Lefebvre V; Kiani SP; Durand-Tardif M
    Int J Mol Sci; 2009 Aug; 10(8):3547-82. PubMed ID: 20111677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomic Approaches to Identify Proteins Responsive to Cold Stress.
    Jozefowicz AM; Döll S; Mock HP
    Methods Mol Biol; 2020; 2156():161-170. PubMed ID: 32607981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elucidating the fungal stress response by proteomics.
    Kroll K; Pähtz V; Kniemeyer O
    J Proteomics; 2014 Jan; 97():151-63. PubMed ID: 23756228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteomics to study adaptations in marine organisms to environmental stress.
    Tomanek L
    J Proteomics; 2014 Jun; 105():92-106. PubMed ID: 24788067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultraweak photon emission and proteomics analyses in soybean under abiotic stress.
    Komatsu S; Kamal AH; Makino T; Hossain Z
    Biochim Biophys Acta; 2014 Jul; 1844(7):1208-18. PubMed ID: 24726903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redox proteomics for the assessment of redox-related posttranslational regulation in plants.
    Mock HP; Dietz KJ
    Biochim Biophys Acta; 2016 Aug; 1864(8):967-73. PubMed ID: 26784836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.