BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 2132980)

  • 21. Mosquito-Plasmodium interactions in response to immune activation of the vector.
    Lowenberger CA; Kamal S; Chiles J; Paskewitz S; Bulet P; Hoffmann JA; Christensen BM
    Exp Parasitol; 1999 Jan; 91(1):59-69. PubMed ID: 9920043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A rodent malaria, Plasmodium berghei, is experimentally transmitted to mice by merely probing of infective mosquito, Anopheles stephensi.
    Matsuoka H; Yoshida S; Hirai M; Ishii A
    Parasitol Int; 2002 Mar; 51(1):17-23. PubMed ID: 11880224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclical transmission of Plasmodium berghei (Coccidiida: plasmodiidae) by Anopheles omorii (Diptera: Culicidae).
    Matsuoka H; Yamamoto S; Chinzei Y; Ando K; Arakawa R; Kamimura K; Syafruddin ; Kawamoto F; Ishii A
    J Med Entomol; 1992 Mar; 29(2):343-5. PubMed ID: 1495055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carboxypeptidases B of Anopheles gambiae as targets for a Plasmodium falciparum transmission-blocking vaccine.
    Lavazec C; Boudin C; Lacroix R; Bonnet S; Diop A; Thiberge S; Boisson B; Tahar R; Bourgouin C
    Infect Immun; 2007 Apr; 75(4):1635-42. PubMed ID: 17283100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced transmission of malaria parasites to mosquitoes in a murine model of type 2 diabetes.
    Pakpour N; Cheung KW; Luckhart S
    Malar J; 2016 Apr; 15():231. PubMed ID: 27102766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of blood feeding and exogenous supply of tryptophan on the quantities of xanthurenic acid in the salivary glands of Anopheles stephensi (Diptera: Culicidae).
    Okech B; Arai M; Matsuoka H
    Biochem Biophys Res Commun; 2006 Mar; 341(4):1113-8. PubMed ID: 16469295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Consequences of larval competition and exposure to permethrin for the development of the rodent malaria Plasmodium berghei in the mosquito Anopheles gambiae.
    Hauser G; Thiévent K; Koella JC
    Parasit Vectors; 2020 Feb; 13(1):107. PubMed ID: 32106886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Infection intensity-dependent responses of Anopheles gambiae to the African malaria parasite Plasmodium falciparum.
    Mendes AM; Awono-Ambene PH; Nsango SE; Cohuet A; Fontenille D; Kafatos FC; Christophides GK; Morlais I; Vlachou D
    Infect Immun; 2011 Nov; 79(11):4708-15. PubMed ID: 21844236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Midgut specific immune response of vector mosquito Anopheles stephensi to malaria parasite Plasmodium.
    Gakhar SK; Shandilya HK
    Indian J Exp Biol; 2001 Mar; 39(3):287-90. PubMed ID: 11495292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning, characterization and transmission blocking potential of midgut carboxypeptidase A in Anopheles stephensi.
    VenkatRao V; Kumar SK; Sridevi P; Muley VY; Chaitanya RK
    Acta Trop; 2017 Apr; 168():21-28. PubMed ID: 28087198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmodium berghei: infectivity of mice to Anopheles stephensi mosquitoes.
    Butcher GA; Sinden RE; Billker O
    Exp Parasitol; 1996 Dec; 84(3):371-9. PubMed ID: 8948326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of anti-fat body antibodies on reproductive capacity of mosquito Anopheles stephensi and transmission blocking of Plasmodium vivax.
    Gulia-Nuss M; Mundhalia A; Gakhar SK
    Indian J Exp Biol; 2011 Jul; 49(7):479-82. PubMed ID: 21800498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmodium berghei: serum-mediated inhibition of infectivity of infected mice to Anopheles stephensi mosquitoes.
    Fleck SL; Butcher GA; Sinden RE
    Exp Parasitol; 1994 Feb; 78(1):20-7. PubMed ID: 8299757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rare sugar, allose, inhibits the development of
    Mizushima D; Yamamoto DS; Tabbabi A; Arai M; Kato H
    Front Cell Infect Microbiol; 2023; 13():1162918. PubMed ID: 37545855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lectin-carbohydrate recognition mechanism of Plasmodium berghei in the midgut of malaria vector Anopheles stephensi using quantum dot as a new approach.
    Basseri HR; Javazm MS; Farivar L; Abai MR
    Acta Trop; 2016 Apr; 156():37-42. PubMed ID: 26772447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmodium berghei: plasmodium perforin-like protein 5 is required for mosquito midgut invasion in Anopheles stephensi.
    Ecker A; Pinto SB; Baker KW; Kafatos FC; Sinden RE
    Exp Parasitol; 2007 Aug; 116(4):504-8. PubMed ID: 17367780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using green fluorescent malaria parasites to screen for permissive vector mosquitoes.
    Frischknecht F; Martin B; Thiery I; Bourgouin C; Menard R
    Malar J; 2006 Mar; 5():23. PubMed ID: 16569221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential expression of proteins in the midgut of Anopheles albimanus infected with Plasmodium berghei.
    Serrano-Pinto V; Acosta-Pérez M; Luviano-Bazán D; Hurtado-Sil G; Batista CV; Martínez-Barnetche J; Lánz-Mendoza H
    Insect Biochem Mol Biol; 2010 Oct; 40(10):752-8. PubMed ID: 20692341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression, immunogenicity, histopathology, and potency of a mosquito-based malaria transmission-blocking recombinant vaccine.
    Mathias DK; Plieskatt JL; Armistead JS; Bethony JM; Abdul-Majid KB; McMillan A; Angov E; Aryee MJ; Zhan B; Gillespie P; Keegan B; Jariwala AR; Rezende W; Bottazzi ME; Scorpio DG; Hotez PJ; Dinglasan RR
    Infect Immun; 2012 Apr; 80(4):1606-14. PubMed ID: 22311924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of mosquito genes on Plasmodium development.
    Osta MA; Christophides GK; Kafatos FC
    Science; 2004 Mar; 303(5666):2030-2. PubMed ID: 15044804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.