These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21330297)

  • 1. Nitric oxide production induced in roots of Lotus japonicus by lipopolysaccharide from Mesorhizobium loti.
    Murakami E; Nagata M; Shimoda Y; Kucho K; Higashi S; Abe M; Hashimoto M; Uchiumi T
    Plant Cell Physiol; 2011 Apr; 52(4):610-7. PubMed ID: 21330297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus.
    Nagata M; Murakami E; Shimoda Y; Shimoda-Sasakura F; Kucho K; Suzuki A; Abe M; Higashi S; Uchiumi T
    Mol Plant Microbe Interact; 2008 Sep; 21(9):1175-83. PubMed ID: 18700822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of nitric oxide-inducing lipid A derived from Mesorhizobium loti lipopolysaccharide.
    Hashimoto M; Tanishita Y; Suda Y; Murakami E; Nagata M; Kucho K; Abe M; Uchiumi T
    Microbes Environ; 2012; 27(4):490-6. PubMed ID: 23059724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus.
    Shimoda Y; Shimoda-Sasakura F; Kucho K; Kanamori N; Nagata M; Suzuki A; Abe M; Higashi S; Uchiumi T
    Plant J; 2009 Jan; 57(2):254-63. PubMed ID: 18801013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of O-antigen polysaccharide backbone derived from nitric oxide-inducing Mesorhizobium loti MAFF 303099 lipopolysaccharide.
    Hashimoto M; Mizukami M; Osuki KI; Fujiwara N; Suda Y; Uchiumi T
    Carbohydr Res; 2017 Jun; 445():44-50. PubMed ID: 28399430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus-Mesorhizobium loti symbiosis.
    Fukudome M; Calvo-Begueria L; Kado T; Osuki K; Rubio MC; Murakami E; Nagata M; Kucho K; Sandal N; Stougaard J; Becana M; Uchiumi T
    J Exp Bot; 2016 Sep; 67(17):5275-83. PubMed ID: 27443280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric Oxide Detoxification by Mesorhizobium loti Affects Root Nodule Symbiosis with Lotus japonicus.
    Fukudome M; Shimokawa Y; Hashimoto S; Maesako Y; Uchi-Fukudome N; Niihara K; Osuki KI; Uchiumi T
    Microbes Environ; 2021; 36(3):. PubMed ID: 34470944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of a model legume Lotus japonicus to lipochitin oligosaccharide nodulation factors purified from Mesorhizobium loti JRL501.
    Niwa S; Kawaguchi M; Imazumi-Anraku H; Chechetka SA; Ishizaka M; Ikuta A; Kouchi H
    Mol Plant Microbe Interact; 2001 Jul; 14(7):848-56. PubMed ID: 11437258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditional requirement for exopolysaccharide in the Mesorhizobium-Lotus symbiosis.
    Kelly SJ; Muszyński A; Kawaharada Y; Hubber AM; Sullivan JT; Sandal N; Carlson RW; Stougaard J; Ronson CW
    Mol Plant Microbe Interact; 2013 Mar; 26(3):319-29. PubMed ID: 23134480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invasion of Lotus japonicus root hairless 1 by Mesorhizobium loti involves the nodulation factor-dependent induction of root hairs.
    Karas B; Murray J; Gorzelak M; Smith A; Sato S; Tabata S; Szczyglowski K
    Plant Physiol; 2005 Apr; 137(4):1331-44. PubMed ID: 15778455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expressed sequence tags from roots and nodule primordia of Lotus japonicus infected with Mesorhizobium loti.
    Poulsen C; Pødenphant L
    Mol Plant Microbe Interact; 2002 Apr; 15(4):376-9. PubMed ID: 12026176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus.
    Shimoda Y; Nagata M; Suzuki A; Abe M; Sato S; Kato T; Tabata S; Higashi S; Uchiumi T
    Plant Cell Physiol; 2005 Jan; 46(1):99-107. PubMed ID: 15668209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative time-course proteome analysis of Mesorhizobium loti during nodule maturation.
    Nambu M; Tatsukami Y; Morisaka H; Kuroda K; Ueda M
    J Proteomics; 2015 Jul; 125():112-20. PubMed ID: 25982383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two distinct EIN2 genes cooperatively regulate ethylene signaling in Lotus japonicus.
    Miyata K; Kawaguchi M; Nakagawa T
    Plant Cell Physiol; 2013 Sep; 54(9):1469-77. PubMed ID: 23825220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grafting between model legumes demonstrates roles for roots and shoots in determining nodule type and host/rhizobia specificity.
    Lohar DP; VandenBosch KA
    J Exp Bot; 2005 Jun; 56(416):1643-50. PubMed ID: 15824071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of KpsS, a novel polysaccharide sulphotransferase in Mesorhizobium loti.
    Townsend GE; Keating DH
    Mol Microbiol; 2008 Jun; 68(5):1149-64. PubMed ID: 18430142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamine synthetase I-deficiency in Mesorhizobium loti differentially affects nodule development and activity in Lotus japonicus.
    Chungopast S; Thapanapongworakul P; Matsuura H; Van Dao T; Asahi T; Tada K; Tajima S; Nomura M
    J Plant Physiol; 2014 Mar; 171(5):104-8. PubMed ID: 24484964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis.
    Nakagawa T; Kaku H; Shimoda Y; Sugiyama A; Shimamura M; Takanashi K; Yazaki K; Aoki T; Shibuya N; Kouchi H
    Plant J; 2011 Jan; 65(2):169-80. PubMed ID: 21223383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Down-regulation of NSP2 expression in developmentally young regions of Lotus japonicus roots in response to rhizobial inoculation.
    Murakami Y; Yokoyama H; Fukui R; Kawaguchi M
    Plant Cell Physiol; 2013 Apr; 54(4):518-27. PubMed ID: 23335614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stably Transformed Lotus japonicus Plants Overexpressing Phytoglobin LjGlb1-1 Show Decreased Nitric Oxide Levels in Roots and Nodules as Well as Delayed Nodule Senescence.
    Fukudome M; Watanabe E; Osuki KI; Imaizumi R; Aoki T; Becana M; Uchiumi T
    Plant Cell Physiol; 2019 Apr; 60(4):816-825. PubMed ID: 30597068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.