These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 21330612)

  • 61. Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans.
    Forbes SC; Slade JM; Meyer RA
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1124-31. PubMed ID: 19088770
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sympathetic adaptations to one-legged training.
    Ray CA
    J Appl Physiol (1985); 1999 May; 86(5):1583-7. PubMed ID: 10233121
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Concurrent improvements in cardiorespiratory and muscle fitness in response to total body recumbent stepping in humans.
    Hass CJ; Garzarella L; de Hoyos DV; Connaughton DP; Pollock ML
    Eur J Appl Physiol; 2001 Jul; 85(1-2):157-63. PubMed ID: 11513310
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The effect of Q factor on gross mechanical efficiency and muscular activation in cycling.
    Disley BX; Li FX
    Scand J Med Sci Sports; 2014 Feb; 24(1):117-21. PubMed ID: 22612455
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of pedaling technique on muscle activity and cycling efficiency.
    Cannon DT; Kolkhorst FW; Cipriani DJ
    Eur J Appl Physiol; 2007 Apr; 99(6):659-64. PubMed ID: 17226060
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of different muscle shortening velocities during prolonged incremental cycling exercise on the plasma growth hormone, insulin, glucose, glucagon, cortisol, leptin and lactate concentrations.
    Zoladz JA; Duda K; Konturek SJ; Sliwowski Z; Pawlik T; Majerczak J
    J Physiol Pharmacol; 2002 Sep; 53(3):409-22. PubMed ID: 12369738
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Improved muscular efficiency displayed as Tour de France champion matures.
    Coyle EF
    J Appl Physiol (1985); 2005 Jun; 98(6):2191-6. PubMed ID: 15774697
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Strength cycle training: effects on muscular strength and aerobic conditioning.
    Van Zant RS; Bouillon LE
    J Strength Cond Res; 2007 Feb; 21(1):178-82. PubMed ID: 17313285
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Moderate-intensity endurance training improves endothelial glycocalyx layer integrity in healthy young men.
    Majerczak J; Grandys M; Duda K; Zakrzewska A; Balcerczyk A; Kolodziejski L; Szymoniak-Chochol D; Smolenski RT; Bartosz G; Chlopicki S; Zoladz JA
    Exp Physiol; 2017 Jan; 102(1):70-85. PubMed ID: 27748983
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans.
    Burgomaster KA; Howarth KR; Phillips SM; Rakobowchuk M; Macdonald MJ; McGee SL; Gibala MJ
    J Physiol; 2008 Jan; 586(1):151-60. PubMed ID: 17991697
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of short-term endurance training on muscle deoxygenation trends using NIRS.
    Neary JP; McKenzie DC; Bhambhani YN
    Med Sci Sports Exerc; 2002 Nov; 34(11):1725-32. PubMed ID: 12439075
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Combining explosive and high-resistance training improves performance in competitive cyclists.
    Paton CD; Hopkins WG
    J Strength Cond Res; 2005 Nov; 19(4):826-30. PubMed ID: 16287351
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Standardized versus customized high-intensity training: effects on cycling performance.
    Capostagno B; Lambert MI; Lamberts RP
    Int J Sports Physiol Perform; 2014 Mar; 9(2):292-301. PubMed ID: 23881116
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans.
    Churchley EG; Coffey VG; Pedersen DJ; Shield A; Carey KA; Cameron-Smith D; Hawley JA
    J Appl Physiol (1985); 2007 Apr; 102(4):1604-11. PubMed ID: 17218424
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Skeletal muscle oxidative metabolism in sedentary humans: 31P-MRS assessment of O2 supply and demand limitations.
    Haseler LJ; Lin AP; Richardson RS
    J Appl Physiol (1985); 2004 Sep; 97(3):1077-81. PubMed ID: 15133010
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Muscle fiber type distribution and nonlinear .VO(2)-power output relationship in cycling.
    Pedersen PK; Sørensen JB; Jensen K; Johansen L; Levin K
    Med Sci Sports Exerc; 2002 Apr; 34(4):655-61. PubMed ID: 11932575
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of locomotor muscle fatigue on joint-specific power production during cycling.
    Elmer SJ; Marshall CS; Wehmanen K; Amann M; McDaniel J; Martin DT; Martin JC
    Med Sci Sports Exerc; 2012 Aug; 44(8):1504-11. PubMed ID: 22343616
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Pedal trajectory alters maximal single-leg cycling power.
    Martin JC; Lamb SM; Brown NA
    Med Sci Sports Exerc; 2002 Aug; 34(8):1332-6. PubMed ID: 12165689
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High-intensity interval training increases in vivo oxidative capacity with no effect on P(i)→ATP rate in resting human muscle.
    Larsen RG; Befroy DE; Kent-Braun JA
    Am J Physiol Regul Integr Comp Physiol; 2013 Mar; 304(5):R333-42. PubMed ID: 23255590
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Prior upper body exercise reduces cycling work capacity but not critical power.
    Johnson MA; Mills DE; Brown PI; Sharpe GR
    Med Sci Sports Exerc; 2014 Apr; 46(4):802-8. PubMed ID: 24042306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.