These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 21330622)
1. Experimentally tested computer modeling of stress fractures in rats. Stern-Perry M; Gefen A; Shabshin N; Epstein Y J Appl Physiol (1985); 2011 Apr; 110(4):909-16. PubMed ID: 21330622 [TBL] [Abstract][Full Text] [Related]
2. Surgical and morphological factors that affect internal mechanical loads in soft tissues of the transtibial residuum. Portnoy S; Siev-Ner I; Yizhar Z; Kristal A; Shabshin N; Gefen A Ann Biomed Eng; 2009 Dec; 37(12):2583-605. PubMed ID: 19768545 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical analysis for stress fractures of the anterior middle third of the tibia in athletes: nonlinear analysis using a three-dimensional finite element method. Sonoda N; Chosa E; Totoribe K; Tajima N J Orthop Sci; 2003; 8(4):505-13. PubMed ID: 12898301 [TBL] [Abstract][Full Text] [Related]
4. Experimental validation of a finite element model of a human cadaveric tibia. Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865 [TBL] [Abstract][Full Text] [Related]
5. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties. Yosibash Z; Tal D; Trabelsi N Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270 [TBL] [Abstract][Full Text] [Related]
6. Full and surface tibial cementation in total knee arthroplasty: a biomechanical investigation of stress distribution and remodeling in the tibia. Cawley DT; Kelly N; Simpkin A; Shannon FJ; McGarry JP Clin Biomech (Bristol); 2012 May; 27(4):390-7. PubMed ID: 22079691 [TBL] [Abstract][Full Text] [Related]
7. 3D characterization of bone strains in the rat tibia loading model. Torcasio A; Zhang X; Duyck J; van Lenthe GH Biomech Model Mechanobiol; 2012 Mar; 11(3-4):403-10. PubMed ID: 21688057 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional simulation of fracture repair in the human tibia. Lacroix D; Prendergast PJ Comput Methods Biomech Biomed Engin; 2002 Oct; 5(5):369-76. PubMed ID: 12745434 [TBL] [Abstract][Full Text] [Related]
9. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study. Perillo-Marcone A; Taylor M J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092 [TBL] [Abstract][Full Text] [Related]
10. The establishment of a mechanobiology model of bone and functional adaptation in response to mechanical loading. Chen XY; Zhang XZ; Guo Y; Li RX; Lin JJ; Wei Y Clin Biomech (Bristol); 2008; 23 Suppl 1():S88-95. PubMed ID: 18448217 [TBL] [Abstract][Full Text] [Related]
11. Effects of running speed on a probabilistic stress fracture model. Edwards WB; Taylor D; Rudolphi TJ; Gillette JC; Derrick TR Clin Biomech (Bristol); 2010 May; 25(4):372-7. PubMed ID: 20096977 [TBL] [Abstract][Full Text] [Related]
12. Finite element modeling of trabecular bone damage. Kosmopoulos V; Keller TS Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):209-16. PubMed ID: 12888432 [TBL] [Abstract][Full Text] [Related]
13. A multidirectional fracture stiffness model to determine the principal stiffness properties of a healing human tibia. Ogrodnik PJ; Thomas PB; Moorcroft CI; Mohammed KN Proc Inst Mech Eng H; 2013 Oct; 227(10):1125-34. PubMed ID: 23886971 [TBL] [Abstract][Full Text] [Related]
14. Effects of hormonal conditions and drugs on both muscle and bone strength can be assessed in a single rat test. Kaastad TS; Huiskes R; ReikerAs O; Nordsletten L Bone; 2000 Apr; 26(4):355-60. PubMed ID: 10719278 [TBL] [Abstract][Full Text] [Related]
15. Degradation of bone structural properties by accumulation and coalescence of microcracks. Danova NA; Colopy SA; Radtke CL; Kalscheur VL; Markel MD; Vanderby R; McCabe RP; Escarcega AJ; Muir P Bone; 2003 Aug; 33(2):197-205. PubMed ID: 14499353 [TBL] [Abstract][Full Text] [Related]
16. Multilevel finite element modeling for the prediction of local cellular deformation in bone. Deligianni DD; Apostolopoulos CA Biomech Model Mechanobiol; 2008 Apr; 7(2):151-9. PubMed ID: 17431696 [TBL] [Abstract][Full Text] [Related]
17. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. Hsieh YF; Robling AG; Ambrosius WT; Burr DB; Turner CH J Bone Miner Res; 2001 Dec; 16(12):2291-7. PubMed ID: 11760844 [TBL] [Abstract][Full Text] [Related]
18. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading. Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566 [TBL] [Abstract][Full Text] [Related]
19. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849 [TBL] [Abstract][Full Text] [Related]
20. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]