These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
29. Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. Sinani VA; Gheith MK; Yaroslavov AA; Rakhnyanskaya AA; Sun K; Mamedov AA; Wicksted JP; Kotov NA J Am Chem Soc; 2005 Mar; 127(10):3463-72. PubMed ID: 15755166 [TBL] [Abstract][Full Text] [Related]
30. Role of peptide--peptide interactions in stabilizing peptide-wrapped single-walled carbon nanotubes: a molecular dynamics study. Chiu CC; Dieckmann GR; Nielsen SO Biopolymers; 2009; 92(3):156-63. PubMed ID: 19226620 [TBL] [Abstract][Full Text] [Related]
31. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Takenobu T; Takano T; Shiraishi M; Murakami Y; Ata M; Kataura H; Achiba Y; Iwasa Y Nat Mater; 2003 Oct; 2(10):683-8. PubMed ID: 12958593 [TBL] [Abstract][Full Text] [Related]
32. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water. Martin W; Zhu W; Krilov G J Phys Chem B; 2008 Dec; 112(50):16076-89. PubMed ID: 19367836 [TBL] [Abstract][Full Text] [Related]
33. An unexpected new optimum in the structure space of DNA solubilizing single-walled carbon nanotubes. Vogel SR; Kappes MM; Hennrich F; Richert C Chemistry; 2007; 13(6):1815-20. PubMed ID: 17133636 [TBL] [Abstract][Full Text] [Related]
34. [Equilibrium solubility of new potential drugs in water, 1-octanol and cyclohexane]. Józan M; Takácsné-Novak K; Szász G Acta Pharm Hung; 1996 May; 66(3):141-6. PubMed ID: 8975541 [TBL] [Abstract][Full Text] [Related]
35. Dye-tissue interactions: mechanisms, quantification and bonding parameters for dyes used in biological staining. Dapson RW Biotech Histochem; 2005; 80(2):49-72. PubMed ID: 16195171 [TBL] [Abstract][Full Text] [Related]
36. Molecular dynamics study of a carbon nanotube binding reversible cyclic peptide. Chiu CC; Maher MC; Dieckmann GR; Nielsen SO ACS Nano; 2010 May; 4(5):2539-46. PubMed ID: 20423073 [TBL] [Abstract][Full Text] [Related]
37. Superior activity of structurally deprived enzyme-carbon nanotube hybrids in cationic reverse micelles. Das D; Das PK Langmuir; 2009 Apr; 25(8):4421-8. PubMed ID: 19245221 [TBL] [Abstract][Full Text] [Related]
38. Mechanical peeling of free-standing single-walled carbon-nanotube bundles. Ke C; Zheng M; Zhou G; Cui W; Pugno N; Miles RN Small; 2010 Feb; 6(3):438-45. PubMed ID: 19998358 [TBL] [Abstract][Full Text] [Related]
39. Assessment of chemically separated carbon nanotubes for nanoelectronics. Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484 [TBL] [Abstract][Full Text] [Related]
40. Isothermal titration calorimetry and 1H NMR studies on host-guest interaction of paeonol and two of its isomers with beta-cyclodextrin. Sun DZ; Li L; Qiu XM; Liu F; Yin BL Int J Pharm; 2006 Jun; 316(1-2):7-13. PubMed ID: 16554127 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]