BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 21331425)

  • 1. Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating.
    Ge Z; Wang W; Yang C
    Lab Chip; 2011 Apr; 11(7):1396-402. PubMed ID: 21331425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel.
    Ge Z; Wang W; Yang C
    Anal Chim Acta; 2015 Feb; 858():91-7. PubMed ID: 25597807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Joule heating on electrokinetic transport.
    Cetin B; Li D
    Electrophoresis; 2008 Mar; 29(5):994-1005. PubMed ID: 18271065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels.
    Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC
    Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and numerical analysis of temperature gradient focusing via Joule heating.
    Sommer GJ; Kim SM; Littrell RJ; Hasselbrink EF
    Lab Chip; 2007 Jul; 7(7):898-907. PubMed ID: 17594010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.
    Sridharan S; Zhu J; Hu G; Xuan X
    Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical modeling of the Joule heating effect on electrokinetic flow focusing.
    Huang KD; Yang RJ
    Electrophoresis; 2006 May; 27(10):1957-66. PubMed ID: 16619299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joule heating induced transient temperature field and its effects on electroosmosis in a microcapillary packed with microspheres.
    Kang Y; Yang C; Huang X
    Langmuir; 2005 Aug; 21(16):7598-607. PubMed ID: 16042499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips.
    Gui L; Ren CL
    Langmuir; 2008 Mar; 24(6):2938-46. PubMed ID: 18257592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Joule heating effects on temperature gradient in diverging microchannels for isoelectric focusing applications.
    Kates B; Ren CL
    Electrophoresis; 2006 May; 27(10):1967-76. PubMed ID: 16703632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC flectric fields.
    Zhu J; Xuan X
    Electrophoresis; 2009 Aug; 30(15):2668-75. PubMed ID: 19621378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joule heating in electrokinetic flow.
    Xuan X
    Electrophoresis; 2008 Jan; 29(1):33-43. PubMed ID: 18058768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-power concentration and separation using temperature gradient focusing via Joule heating.
    Kim SM; Sommer GJ; Burns MA; Hasselbrink EF
    Anal Chem; 2006 Dec; 78(23):8028-35. PubMed ID: 17134136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems.
    Erickson D; Sinton D; Li D
    Lab Chip; 2003 Aug; 3(3):141-9. PubMed ID: 15100765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsystem for field-amplified electrokinetic trapping preconcentration of DNA at poly(ethylene terephthalate) membranes.
    Hahn T; O'Sullivan CK; Drese KS
    Anal Chem; 2009 Apr; 81(8):2904-11. PubMed ID: 19296594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrokinetically driven continuous-flow enrichment of colloidal particles by Joule heating induced temperature gradient focusing in a convergent-divergent microfluidic structure.
    Zhao C; Ge Z; Song Y; Yang C
    Sci Rep; 2017 Sep; 7(1):10803. PubMed ID: 28883550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joule heating effects on electroosmotic entry flow.
    Prabhakaran RA; Zhou Y; Patel S; Kale A; Song Y; Hu G; Xuan X
    Electrophoresis; 2017 Mar; 38(5):572-579. PubMed ID: 27557612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip.
    Gui L; Ren CL
    Anal Chem; 2006 Sep; 78(17):6215-22. PubMed ID: 16944904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.