These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21332148)

  • 1. Microscopic mechanism of 1/f noise in graphene: role of energy band dispersion.
    Pal AN; Ghatak S; Kochat V; Sneha ES; Sampathkumar A; Raghavan S; Ghosh A
    ACS Nano; 2011 Mar; 5(3):2075-81. PubMed ID: 21332148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic structure of atomically precise graphene nanoribbons.
    Ruffieux P; Cai J; Plumb NC; Patthey L; Prezzi D; Ferretti A; Molinari E; Feng X; Müllen K; Pignedoli CA; Fasel R
    ACS Nano; 2012 Aug; 6(8):6930-5. PubMed ID: 22853456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface doping and band gap tunability in hydrogenated graphene.
    Matis BR; Burgess JS; Bulat FA; Friedman AL; Houston BH; Baldwin JW
    ACS Nano; 2012 Jan; 6(1):17-22. PubMed ID: 22187951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bandgap opening in graphene antidot lattices: the missing half.
    Ouyang F; Peng S; Liu Z; Liu Z
    ACS Nano; 2011 May; 5(5):4023-30. PubMed ID: 21513306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic transport in graphitic nanoribbon films.
    Behnam A; Johnson JL; An Y; Biswas A; Ural A
    ACS Nano; 2011 Mar; 5(3):1617-22. PubMed ID: 21341738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chair and twist-boat membranes in hydrogenated graphene.
    Samarakoon DK; Wang XQ
    ACS Nano; 2009 Dec; 3(12):4017-22. PubMed ID: 19947580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-quality graphene p-n junctions via resist-free fabrication and solution-based noncovalent functionalization.
    Cheng HC; Shiue RJ; Tsai CC; Wang WH; Chen YT
    ACS Nano; 2011 Mar; 5(3):2051-9. PubMed ID: 21322639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductance gaps in graphene ribbons designed by molecular aggregations.
    Rosales L; Pacheco M; Barticevic Z; Latgé A; Orellana PA
    Nanotechnology; 2009 Mar; 20(9):095705. PubMed ID: 19417501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conduction and rectification in few-layer graphene Y junctions.
    Zhang G; Zhang H
    Nanoscale; 2011 Nov; 3(11):4604-7. PubMed ID: 21987096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zigzag graphene nanoribbons with saturated edges.
    Kudin KN
    ACS Nano; 2008 Mar; 2(3):516-22. PubMed ID: 19206578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain effect on electronic structures of graphene nanoribbons: A first-principles study.
    Sun L; Li Q; Ren H; Su H; Shi QW; Yang J
    J Chem Phys; 2008 Aug; 129(7):074704. PubMed ID: 19044789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic properties of graphene nanostructures.
    Molitor F; Güttinger J; Stampfer C; Dröscher S; Jacobsen A; Ihn T; Ensslin K
    J Phys Condens Matter; 2011 Jun; 23(24):243201. PubMed ID: 21613728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passivation of metal surface states: microscopic origin for uniform monolayer graphene by low temperature chemical vapor deposition.
    Jeon I; Yang H; Lee SH; Heo J; Seo DH; Shin J; Chung UI; Kim ZG; Chung HJ; Seo S
    ACS Nano; 2011 Mar; 5(3):1915-20. PubMed ID: 21309604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects.
    Kotakoski J; Santos-Cottin D; Krasheninnikov AV
    ACS Nano; 2012 Jan; 6(1):671-6. PubMed ID: 22188561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T
    ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons.
    Kumar SB; Jalil MB; Tan SG; Liang G
    J Phys Condens Matter; 2010 Sep; 22(37):375303. PubMed ID: 21403192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain dependence of the heat transport properties of graphene nanoribbons.
    Yeo PS; Loh KP; Gan CK
    Nanotechnology; 2012 Dec; 23(49):495702. PubMed ID: 23149343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman 2D-band splitting in graphene: theory and experiment.
    Frank O; Mohr M; Maultzsch J; Thomsen C; Riaz I; Jalil R; Novoselov KS; Tsoukleri G; Parthenios J; Papagelis K; Kavan L; Galiotis C
    ACS Nano; 2011 Mar; 5(3):2231-9. PubMed ID: 21319849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene nanoribbons as low band gap donor materials for organic photovoltaics: quantum chemical aided design.
    Osella S; Narita A; Schwab MG; Hernandez Y; Feng X; Müllen K; Beljonne D
    ACS Nano; 2012 Jun; 6(6):5539-48. PubMed ID: 22631451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1).
    Cong C; Yu T; Saito R; Dresselhaus GF; Dresselhaus MS
    ACS Nano; 2011 Mar; 5(3):1600-5. PubMed ID: 21344883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.