BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21332237)

  • 1. Diffusion as a probe of peptide-induced membrane domain formation.
    Guo L; Smith-Dupont KB; Gai F
    Biochemistry; 2011 Mar; 50(12):2291-7. PubMed ID: 21332237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion as a probe of the heterogeneity of antimicrobial peptide-membrane interactions.
    Smith-Dupont KB; Guo L; Gai F
    Biochemistry; 2010 Jun; 49(22):4672-8. PubMed ID: 20455545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes?
    McHenry AJ; Sciacca MF; Brender JR; Ramamoorthy A
    Biochim Biophys Acta; 2012 Dec; 1818(12):3019-24. PubMed ID: 22885355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of arenicin-1 microdomains in bilayers and their specific lipid interaction revealed by Z-scan FCS.
    Macháň R; Hof M; Chernovets T; Zhmak MN; Ovchinnikova TV; Sýkora J
    Anal Bioanal Chem; 2011 Apr; 399(10):3547-54. PubMed ID: 21293959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides.
    Pokorny A; Almeida PF
    Biochemistry; 2005 Jul; 44(27):9538-44. PubMed ID: 15996108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weak glycolipid binding of a microdomain-tracer peptide correlates with aggregation and slow diffusion on cell membranes.
    Lauterbach T; Manna M; Ruhnow M; Wisantoso Y; Wang Y; Matysik A; Oglęcka K; Mu Y; Geifman-Shochat S; Wohland T; Kraut R
    PLoS One; 2012; 7(12):e51222. PubMed ID: 23251459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition between Different Diffusion Modes of Individual Lipids during the Membrane-Specific Action of As-CATH4 Peptides.
    Wu J; Xu C; Ye Z; Chen H; Wang Y; Yang K; Yuan B
    Small; 2023 Aug; 19(34):e2301713. PubMed ID: 37093200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of peptides on lipid membranes.
    Khandelia H; Ipsen JH; Mouritsen OG
    Biochim Biophys Acta; 2008; 1778(7-8):1528-36. PubMed ID: 18358231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of amphipathic alpha-helical antimicrobial peptides to lipid membranes: lessons from temporins B and L.
    Mahalka AK; Kinnunen PK
    Biochim Biophys Acta; 2009 Aug; 1788(8):1600-9. PubMed ID: 19394305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of a novel artificial antimicrobial peptide by fluorescence correlation spectroscopy: an amphipathic cationic pattern is sufficient for selective binding to bacterial type membranes and antimicrobial activity.
    Yu L; Ding JL; Ho B; Wohland T
    Biochim Biophys Acta; 2005 Oct; 1716(1):29-39. PubMed ID: 16168384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides.
    Gao B; Sherman P; Luo L; Bowie J; Zhu S
    FASEB J; 2009 Apr; 23(4):1230-45. PubMed ID: 19088182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane permeabilization design of antimicrobial peptides based on chikungunya virus fusion domain scaffold and its antibacterial activity against gram-positive Streptococcus pneumoniae in respiratory infection.
    Yang R; Zhang G; Zhang F; Li Z; Huang C
    Biochimie; 2018 Mar; 146():139-147. PubMed ID: 29277569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation of cateslytin beta-sheets on negatively charged lipids promotes rigid membrane domains. A new mode of action for antimicrobial peptides?
    Jean-François F; Castano S; Desbat B; Odaert B; Roux M; Metz-Boutigue MH; Dufourc EJ
    Biochemistry; 2008 Jun; 47(24):6394-402. PubMed ID: 18500827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775.
    Joshi S; Bisht GS; Rawat DS; Kumar A; Kumar R; Maiti S; Pasha S
    Biochim Biophys Acta; 2010 Oct; 1798(10):1864-75. PubMed ID: 20599694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum.
    Bagheri M; Beyermann M; Dathe M
    Antimicrob Agents Chemother; 2009 Mar; 53(3):1132-41. PubMed ID: 19104020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Cationic Side Chains in the Antimicrobial Activity of C18G.
    Kohn EM; Shirley DJ; Arotsky L; Picciano AM; Ridgway Z; Urban MW; Carone BR; Caputo GA
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29401708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23.
    Roversi D; Luca V; Aureli S; Park Y; Mangoni ML; Stella L
    ACS Chem Biol; 2014 Sep; 9(9):2003-7. PubMed ID: 25058470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components.
    Savini F; Loffredo MR; Troiano C; Bobone S; Malanovic N; Eichmann TO; Caprio L; Canale VC; Park Y; Mangoni ML; Stella L
    Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183291. PubMed ID: 32234322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implicit Membrane Investigation of the Stability of Antimicrobial Peptide β-Barrels and Arcs.
    Lipkin RB; Lazaridis T
    J Membr Biol; 2015 Jun; 248(3):469-86. PubMed ID: 25430621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.