BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 21332846)

  • 21. Characterization of pollen by vibrational spectroscopy.
    Zimmermann B
    Appl Spectrosc; 2010 Dec; 64(12):1364-73. PubMed ID: 21144154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy.
    Mouille G; Robin S; Lecomte M; Pagant S; Höfte H
    Plant J; 2003 Aug; 35(3):393-404. PubMed ID: 12887590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aleurone cell walls of wheat grain: high spatial resolution investigation using synchrotron infrared microspectroscopy.
    Jamme F; Robert P; Bouchet B; Saulnier L; Dumas P; Guillon F
    Appl Spectrosc; 2008 Aug; 62(8):895-900. PubMed ID: 18702863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tracking infrared signatures of drugs in cancer cells by Fourier transform microspectroscopy.
    Bellisola G; Della Peruta M; Vezzalini M; Moratti E; Vaccari L; Birarda G; Piccinini M; Cinque G; Sorio C
    Analyst; 2010 Dec; 135(12):3077-86. PubMed ID: 20931110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fourier-transform infrared spectroscopy combined with immunomagnetic separation as a tool to discriminate Salmonella serovars.
    De Lamo-Castellví S; Männing A; Rodríguez-Saona LE
    Analyst; 2010 Nov; 135(11):2987-92. PubMed ID: 20877835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy.
    Akerholm M; Hinterstoisser B; Salmén L
    Carbohydr Res; 2004 Feb; 339(3):569-78. PubMed ID: 15013393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development.
    Obudulu O; Bygdell J; Sundberg B; Moritz T; Hvidsten TR; Trygg J; Wingsle G
    BMC Genomics; 2016 Feb; 17():119. PubMed ID: 26887814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Observation of biochemical imaging changes in human pancreatic cancer tissue using Fourier-transform infrared microspectroscopy.
    Chen YJ; Cheng YD; Liu HY; Lin PY; Wang CS
    Chang Gung Med J; 2006; 29(5):518-27. PubMed ID: 17214398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FT-IR microspectroscopic imaging of human carcinoma thin sections based on pattern recognition techniques.
    Lasch P; Naumann D
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):189-202. PubMed ID: 9551650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of multivariate curve resolution for analysis of FT-IR microspectroscopic images of in situ plant tissue.
    Budevska BO; Sum ST; Jones TJ
    Appl Spectrosc; 2003 Feb; 57(2):124-31. PubMed ID: 14610947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new method to quantitatively evaluate the chemical composition of waterlogged wood by means of attenuated total reflectance Fourier transform infrared (ATR FT-IR) measurements carried out on wet material.
    Pizzo B; Pecoraro E; Macchioni N
    Appl Spectrosc; 2013 May; 67(5):553-62. PubMed ID: 23643045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FT-IR microspectroscopy of mouse colon tissues: insight into the chemistry of carcinogenesis and diagnostic potential.
    Cohenford MA; Lim S; Brown C; Chaudhry MA; Sigdel S; Beckelhimer E; Rigas B
    Am J Pathol; 2012 Dec; 181(6):1961-8. PubMed ID: 23063512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FT-IR study of the Chara corallina cell wall under deformation.
    Toole GA; Kacuráková M; Smith AC; Waldron KW; Wilson RH
    Carbohydr Res; 2004 Feb; 339(3):629-35. PubMed ID: 15013400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FT-IR microspectroscopic detection of metabolically deuterated compounds in the rat cerebellum: a novel approach for the study of brain metabolism.
    Wetzel DL; Slatkin DN; LeVine SM
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):15-27. PubMed ID: 9551634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polarized infrared microspectroscopy of single spruce fibers: hydrogen bonding in wood polymers.
    Schmidt M; Gierlinger N; Schade U; Rogge T; Grunze M
    Biopolymers; 2006 Dec; 83(5):546-55. PubMed ID: 16897765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical imaging of latent fingerprint residues.
    Ricci C; Phiriyavityopas P; Curum N; Chan KL; Jickells S; Kazarian SG
    Appl Spectrosc; 2007 May; 61(5):514-22. PubMed ID: 17555621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Method for automatically identifying spectra of different wood cell wall layers in Raman imaging data set.
    Zhang X; Ji Z; Zhou X; Ma JF; Hu YH; Xu F
    Anal Chem; 2015 Jan; 87(2):1344-50. PubMed ID: 25531490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical imaging of live cancer cells in the natural aqueous environment.
    Kuimova MK; Chan KL; Kazarian SG
    Appl Spectrosc; 2009 Feb; 63(2):164-71. PubMed ID: 19215645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fourier transform infrared and Raman microspectroscopy of materials in tissue.
    Kalasinsky VF; Johnson FB; Ferwerda R
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):141-4. PubMed ID: 9551646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast infrared chemical imaging with a quantum cascade laser.
    Yeh K; Kenkel S; Liu JN; Bhargava R
    Anal Chem; 2015 Jan; 87(1):485-93. PubMed ID: 25474546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.