These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21332977)

  • 1. Spatial and temporal EEG dynamics of dual-task driving performance.
    Lin CT; Chen SA; Chiu TT; Lin HZ; Ko LW
    J Neuroeng Rehabil; 2011 Feb; 8():11. PubMed ID: 21332977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinesthesia in a sustained-attention driving task.
    Chuang CH; Ko LW; Jung TP; Lin CT
    Neuroimage; 2014 May; 91():187-202. PubMed ID: 24444995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG alpha spindles and prolonged brake reaction times during auditory distraction in an on-road driving study.
    Sonnleitner A; Treder MS; Simon M; Willmann S; Ewald A; Buchner A; Schrauf M
    Accid Anal Prev; 2014 Jan; 62():110-8. PubMed ID: 24144496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Dynamics of Target Detection via Wireless EEG in Embodied Cognition.
    He C; Chikara RK; Yeh CL; Ko LW
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driver state examination--Treading new paths.
    Wascher E; Getzmann S; Karthaus M
    Accid Anal Prev; 2016 Jun; 91():157-65. PubMed ID: 26986022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-modulatory spectral changes in independent brain processes are correlated with task performance.
    Chuang SW; Ko LW; Lin YP; Huang RS; Jung TP; Lin CT
    Neuroimage; 2012 Sep; 62(3):1469-77. PubMed ID: 22634852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of task combination on EEG spectrum modulation for driver workload estimation.
    Lei S; Roetting M
    Hum Factors; 2011 Apr; 53(2):168-79. PubMed ID: 21702334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Event-related cortical dynamics of soldiers during shooting as a function of varied task demand.
    Kerick SE; Hatfield BD; Allender LE
    Aviat Space Environ Med; 2007 May; 78(5 Suppl):B153-64. PubMed ID: 17547316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG-based assessment of driver cognitive responses in a dynamic virtual-reality driving environment.
    Lin CT; Chung IF; Ko LW; Chen YC; Liang SF; Duann JR
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1349-52. PubMed ID: 17605367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TVAR modeling of EEG to detect audio distraction during simulated driving.
    Dahal N; Nandagopal DN; Cocks B; Vijayalakshmi R; Dasari N; Gaertner P
    J Neural Eng; 2014 Jun; 11(3):036012. PubMed ID: 24809969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using naturalistic driving study data to investigate the impact of driver distraction on driver's brake reaction time in freeway rear-end events in car-following situation.
    Gao J; Davis GA
    J Safety Res; 2017 Dec; 63():195-204. PubMed ID: 29203019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG-Based Attention Tracking During Distracted Driving.
    Wang YK; Jung TP; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1085-94. PubMed ID: 25850090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arousing feedback rectifies lapse in performance and corresponding EEG power spectrum.
    Jung TP; Huang KC; Chuang CH; Chen JA; Ko LW; Chiu TW; Lin CT
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1792-5. PubMed ID: 21095934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving EEG-Based Driver Distraction Classification Using Brain Connectivity Estimators.
    Perera D; Wang YK; Lin CT; Nguyen H; Chai R
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of self-regulation in the context of driver distraction: A simulator study.
    Wandtner B; Schumacher M; Schmidt EA
    Traffic Inj Prev; 2016 Jul; 17(5):472-9. PubMed ID: 27082493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring driver fatigue using a single-channel electroencephalographic device: A validation study by gaze-based, driving performance, and subjective data.
    Morales JM; Díaz-Piedra C; Rieiro H; Roca-González J; Romero S; Catena A; Fuentes LJ; Di Stasi LL
    Accid Anal Prev; 2017 Dec; 109():62-69. PubMed ID: 29031926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of different fatigue levels on brain-behavior relationships in driving.
    Huang KC; Chuang CH; Wang YK; Hsieh CY; King JT; Lin CT
    Brain Behav; 2019 Dec; 9(12):e01379. PubMed ID: 31568699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tonic and phasic EEG and behavioral changes induced by arousing feedback.
    Lin CT; Huang KC; Chao CF; Chen JA; Chiu TW; Ko LW; Jung TP
    Neuroimage; 2010 Aug; 52(2):633-42. PubMed ID: 20438854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha spindles as neurophysiological correlates indicating attentional shift in a simulated driving task.
    Sonnleitner A; Simon M; Kincses WE; Buchner A; Schrauf M
    Int J Psychophysiol; 2012 Jan; 83(1):110-8. PubMed ID: 22094045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.