These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 21332995)
1. In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis. Rocha A; Zhou Y; Kundu S; González JM; BradleighVinson S; Liang H J Nanobiotechnology; 2011 Feb; 9():5. PubMed ID: 21332995 [TBL] [Abstract][Full Text] [Related]
2. Assessment of toxicity of nanoparticles using insects as biological models. Zhou Y; Rocha A; Sanchez CJ; Liang H Methods Mol Biol; 2012; 906():423-33. PubMed ID: 22791454 [TBL] [Abstract][Full Text] [Related]
3. Assessment of Toxicity of Nanoparticles Using Insects as Biological Models. Zhou Y; Chen Y; Rocha A; Sanchez CJ; Liang H Methods Mol Biol; 2020; 2118():269-279. PubMed ID: 32152986 [TBL] [Abstract][Full Text] [Related]
4. Locomotion control of hybrid cockroach robots. Sanchez CJ; Chiu CW; Zhou Y; González JM; Vinson SB; Liang H J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25740855 [TBL] [Abstract][Full Text] [Related]
5. A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis. Szczecinski NS; Brown AE; Bender JA; Quinn RD; Ritzmann RE Biol Cybern; 2014 Feb; 108(1):1-21. PubMed ID: 24178847 [TBL] [Abstract][Full Text] [Related]
6. Intratumoral Injection of Low-Energy Photon-Emitting Gold Nanoparticles: A Microdosimetric Monte Carlo-Based Model. Laprise-Pelletier M; Ma Y; Lagueux J; Côté MF; Beaulieu L; Fortin MA ACS Nano; 2018 Mar; 12(3):2482-2497. PubMed ID: 29498821 [TBL] [Abstract][Full Text] [Related]
7. Descending control of body attitude in the cockroach Blaberus discoidalis and its role in incline climbing. Ritzmann RE; Pollack AJ; Archinal J; Ridgel AL; Quinn RD J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Mar; 191(3):253-64. PubMed ID: 15309482 [TBL] [Abstract][Full Text] [Related]
8. Negatively charged AuNP modified with monoclonal antibody against novel tumor antigen FAT1 for tumor targeting. Fan L; Campagnoli S; Wu H; Grandi A; Parri M; De Camilli E; Grandi G; Viale G; Pileri P; Grifantini R; Song C; Jin B J Exp Clin Cancer Res; 2015 Sep; 34(1):103. PubMed ID: 26373379 [TBL] [Abstract][Full Text] [Related]
9. The feasibility of NaGdF Zhang W; Zhang S; Gao P; Lan B; Li L; Zhang X; Li L; Lu H Med Phys; 2020 Feb; 47(2):662-671. PubMed ID: 31742714 [TBL] [Abstract][Full Text] [Related]
10. A hexapedal jointed-leg model for insect locomotion in the horizontal plane. Kukillaya RP; Holmes PJ Biol Cybern; 2007 Dec; 97(5-6):379-95. PubMed ID: 17926063 [TBL] [Abstract][Full Text] [Related]
11. Effects of aging on behavior and leg kinematics during locomotion in two species of cockroach. Ridgel AL; Ritzmann RE; Schaefer PL J Exp Biol; 2003 Dec; 206(Pt 24):4453-65. PubMed ID: 14610030 [TBL] [Abstract][Full Text] [Related]
12. Probing the interaction of oppositely charged gold nanoparticles with DPPG and DPPC Langmuir monolayers as cell membrane models. Torrano AA; Pereira ÂS; Oliveira ON; Barros-Timmons A Colloids Surf B Biointerfaces; 2013 Aug; 108():120-6. PubMed ID: 23528608 [TBL] [Abstract][Full Text] [Related]
13. Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Huang Y; Yu F; Park YS; Wang J; Shin MC; Chung HS; Yang VC Biomaterials; 2010 Dec; 31(34):9086-91. PubMed ID: 20828812 [TBL] [Abstract][Full Text] [Related]
14. A wasp manipulates neuronal activity in the sub-esophageal ganglion to decrease the drive for walking in its cockroach prey. Gal R; Libersat F PLoS One; 2010 Apr; 5(4):e10019. PubMed ID: 20383324 [TBL] [Abstract][Full Text] [Related]
15. [Bioaccumulation of silver and gold nanoparticles in organs and tissues of rats by neutron activation analysis]. Buzulukov IuP; Arianova EA; Demin VF; Safenkova IV; Gmoshinskiĭ IV; Tutel'ian VA Izv Akad Nauk Ser Biol; 2014; (3):286-95. PubMed ID: 25731040 [TBL] [Abstract][Full Text] [Related]
16. In situ preparation of gold-polyester nanoparticles for biomedical imaging. Attia MF; Ranasinghe M; Akasov R; Anker JN; Whitehead DC; Alexis F Biomater Sci; 2020 Jun; 8(11):3032-3043. PubMed ID: 32314777 [TBL] [Abstract][Full Text] [Related]
17. Interaction of Positively Charged Gold Nanoparticles with Cancer Cells Monitored by an in Situ Label-Free Optical Biosensor and Transmission Electron Microscopy. Peter B; Lagzi I; Teraji S; Nakanishi H; Cervenak L; Zámbó D; Deák A; Molnár K; Truszka M; Szekacs I; Horvath R ACS Appl Mater Interfaces; 2018 Aug; 10(32):26841-26850. PubMed ID: 30022664 [TBL] [Abstract][Full Text] [Related]
18. Size and number of nerve fibres in the central nervous system connectives of the cockroach Blaberus craniifer. Nunnemacher RF; Fiske WJ; Sherman RG J Insect Physiol; 1974 Nov; 20(11):2123-34. PubMed ID: 4416999 [No Abstract] [Full Text] [Related]
19. Insect hypertrehalosemic hormone: isolation and primary structure from Blaberus discoidalis cockroaches. Hayes TK; Keeley LL; Knight DW Biochem Biophys Res Commun; 1986 Oct; 140(2):674-8. PubMed ID: 3778476 [TBL] [Abstract][Full Text] [Related]
20. The influence of the route of administration of gold nanoparticles on their tissue distribution and basic biochemical parameters: In vivo studies. Bednarski M; Dudek M; Knutelska J; Nowiński L; Sapa J; Zygmunt M; Nowak G; Luty-Błocho M; Wojnicki M; Fitzner K; Tęsiorowski M Pharmacol Rep; 2015 Jun; 67(3):405-9. PubMed ID: 25933945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]