These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21333275)

  • 41. A bio-injectable algin-aminocaproic acid thixogel with tri-stimuli responsiveness.
    Chejara DR; Mabrouk M; Badhe RV; Mulla JA; Kumar P; Choonara YE; du Toit LC; Pillay V
    Carbohydr Polym; 2016 Jan; 135():324-33. PubMed ID: 26453884
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes.
    Morais DS; Rodrigues MA; Silva TI; Lopes MA; Santos M; Santos JD; Botelho CM
    Carbohydr Polym; 2013 Jun; 95(1):134-42. PubMed ID: 23618249
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel metal coordination enabled in carboxylated alginic acid for effective fluoride removal.
    Pandi K; Viswanathan N
    Carbohydr Polym; 2015 Mar; 118():242-9. PubMed ID: 25542130
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Environmental effects and desorption characteristics on heavy metal removal using carboxylated alginic acid.
    Jeon C; Je Yoo Y; Hoell WH
    Bioresour Technol; 2005 Jan; 96(1):15-9. PubMed ID: 15364075
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FT-IR spectra of alginic acid block fractions in three species of brown seaweeds.
    Leal D; Matsuhiro B; Rossi M; Caruso F
    Carbohydr Res; 2008 Feb; 343(2):308-16. PubMed ID: 18048014
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering.
    Yan S; Wang T; Feng L; Zhu J; Zhang K; Chen X; Cui L; Yin J
    Biomacromolecules; 2014 Dec; 15(12):4495-508. PubMed ID: 25279766
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Small-angle X-ray scattering and rheological characterization of alginate gels. 3. Alginic acid gels.
    Draget KI; Stokke BT; Yuguchi Y; Urakawa H; Kajiwara K
    Biomacromolecules; 2003; 4(6):1661-8. PubMed ID: 14606893
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs.
    Wen Y; Gallego MR; Nielsen LF; Jorgensen L; Møller EH; Nielsen HM
    Eur J Pharm Biopharm; 2013 Sep; 85(1):87-98. PubMed ID: 23958320
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photolytic depolymerization of alginate.
    Burana-osot J; Hosoyama S; Nagamoto Y; Suzuki S; Linhardt RJ; Toida T
    Carbohydr Res; 2009 Oct; 344(15):2023-7. PubMed ID: 19616772
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis and rheological properties of hydrogels based on amphiphilic alginate-amide derivatives.
    Vallée F; Müller C; Durand A; Schimchowitsch S; Dellacherie E; Kelche C; Cassel JC; Leonard M
    Carbohydr Res; 2009 Jan; 344(2):223-8. PubMed ID: 19084823
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alginic acid-based macromolecular chemiluminescent probe for universal protein assay on a solid-phase membrane.
    Krawczyk T; Kondo M; Azam MG; Zhang H; Shibata T; Kai M
    Analyst; 2010 Nov; 135(11):2894-900. PubMed ID: 20865196
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids.
    Kantar C; Cetin Z; Demiray H
    J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Perfluorinated alginate for cellular encapsulation.
    Gattás-Asfura KM; Fraker CA; Stabler CL
    J Biomed Mater Res A; 2012 Aug; 100(8):1963-71. PubMed ID: 22544596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alginate-graft-PEI as a gene delivery vector with high efficiency and low cytotoxicity.
    He W; Guo Z; Wen Y; Wang Q; Xie B; Zhu S; Wang Q
    J Biomater Sci Polym Ed; 2012; 23(1-4):315-31. PubMed ID: 21244745
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gastro-resistant characteristics of GRAS-grade enteric coatings for pharmaceutical and nutraceutical products.
    Czarnocka JK; Alhnan MA
    Int J Pharm; 2015; 486(1-2):167-74. PubMed ID: 25796126
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis and rheological properties of responsive thickeners based on polysaccharide architectures.
    Karakasyan C; Lack S; Brunel F; Maingault P; Hourdet D
    Biomacromolecules; 2008 Sep; 9(9):2419-29. PubMed ID: 18672929
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of zinc-crosslinked thiolated alginic acid beads and their in vitro evaluation as potential enteric delivery system with folic acid as model drug.
    Taha MO; Aiedeh KM; Al-Hiari Y; Al-Khatib H
    Pharmazie; 2005 Oct; 60(10):736-42. PubMed ID: 16259119
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment.
    Bagre AP; Jain K; Jain NK
    Int J Pharm; 2013 Nov; 456(1):31-40. PubMed ID: 23994363
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast.
    Hébrard G; Hoffart V; Beyssac E; Cardot JM; Alric M; Subirade M
    J Microencapsul; 2010; 27(4):292-302. PubMed ID: 20163284
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multilayered electromagnetic bionanocomposite based on alginic acid: Characterization and biological activities.
    Zare EN; Lakouraj MM; Mohseni M; Motahari A
    Carbohydr Polym; 2015 Oct; 130():372-80. PubMed ID: 26076638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.