These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 21333587)

  • 1. Remote-Raman spectroscopic study of minerals under supercritical CO2 relevant to Venus exploration.
    Sharma SK; Misra AK; Clegg SM; Barefield JE; Wiens RC; Acosta TE; Bates DE
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):75-81. PubMed ID: 21333587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration.
    Sharma SK; Misra AK; Clegg SM; Barefield JE; Wiens RC; Acosta T
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1922):3167-91. PubMed ID: 20529953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation.
    Sharma SK; Misra AK; Lucey PG; Lentz RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):468-76. PubMed ID: 19084470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust.
    Sharma SK; Misra AK; Lucey PG; Wiens RC; Clegg SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1036-45. PubMed ID: 17723318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse.
    Misra AK; Sharma SK; Lucey PG
    Appl Spectrosc; 2006 Feb; 60(2):223-8. PubMed ID: 16542575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsed remote Raman system for daytime measurements of mineral spectra.
    Misra AK; Sharma SK; Chio CH; Lucey PG; Lienert B
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2281-7. PubMed ID: 16029850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stand-off Raman spectroscopic detection of minerals on planetary surfaces.
    Sharma SK; Lucey PG; Ghosh M; Hubble HW; Horton KA
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Aug; 59(10):2391-407. PubMed ID: 12909150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectroscopic analysis of real samples: Brazilian bauxite mineralogy.
    Faulstich FR; Castro HV; de Oliveira LF; Neumann R
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):102-5. PubMed ID: 21531611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime.
    Misra AK; Sharma SK; Acosta TE; Porter JN; Bates DE
    Appl Spectrosc; 2012 Nov; 66(11):1279-85. PubMed ID: 23146183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralogical composition of the meteorite El Pozo (Mexico): a Raman, infrared and XRD study.
    Ostrooumov M; Hernández-Bernal Mdel S
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):437-43. PubMed ID: 21930423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic identification of carbonate minerals in the martian dust.
    Bandfield JL; Glotch TD; Christensen PR
    Science; 2003 Aug; 301(5636):1084-7. PubMed ID: 12934004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote Raman measurements of minerals, organics, and inorganics at 430  m range.
    Acosta-Maeda TE; Misra AK; Muzangwa LG; Berlanga G; Muchow D; Porter J; Sharma SK
    Appl Opt; 2016 Dec; 55(36):10283-10289. PubMed ID: 28059247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Remote Raman System and Its Applications for Planetary Material Studies.
    Qu H; Ling Z; Qi X; Xin Y; Liu C; Cao H
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array.
    Blacksberg J; Alerstam E; Maruyama Y; Cochrane CJ; Rossman GR
    Appl Opt; 2016 Feb; 55(4):739-48. PubMed ID: 26836075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman Spectroscopic Techniques for Planetary Exploration: Detecting Microorganisms through Minerals.
    Verkaaik MF; Hooijschuur JH; Davies GR; Ariese F
    Astrobiology; 2015 Aug; 15(8):697-707. PubMed ID: 26186197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters.
    Sharma SK; Misra AK; Lucey PG; Angel SM; McKay CP
    Appl Spectrosc; 2006 Aug; 60(8):871-6. PubMed ID: 16925922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman efficiencies of natural rocks and minerals: performance of a remote Raman system for planetary exploration at a distance of 10 meters.
    Stopar JD; Lucey PG; Sharma SK; Misra AK; Taylor GJ; Hubble HW
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2315-23. PubMed ID: 16029852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved Raman spectroscopy for in situ planetary mineralogy.
    Blacksberg J; Rossman GR; Gleckler A
    Appl Opt; 2010 Sep; 49(26):4951-62. PubMed ID: 20830184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman spectroscopy of the Dukhan sabkha: identification of geological and biogeological molecules in an extreme environment.
    Edwards HG; Sadooni F; Vítek P; Jehlicka J
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1922):3099-107. PubMed ID: 20529947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops.
    Jehlicka J; Vítek P; Edwards HG; Heagraves M; Capoun T
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):410-9. PubMed ID: 18993111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.