BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 21333759)

  • 21. A view from the groove: peptide binding by MHC molecules and the implications for regional immune responses.
    Cockfield SM; Halloran PF
    Reg Immunol; 1989; 2(4):266-72. PubMed ID: 2701815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A peptide binding motif for I-Eg7, the MHC class II molecule that protects E alpha-transgenic nonobese diabetic mice from autoimmune diabetes.
    Gregori S; Trembleau S; Penna G; Gallazzi F; Hammer J; Papadopoulos GK; Adorini L
    J Immunol; 1999 Jun; 162(11):6630-40. PubMed ID: 10352280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterizing immunodominant and protective influenza hemagglutinin epitopes by functional activity and relative binding to major histocompatibility complex class II sites.
    Rajnavölgyi E; Horváth A; Gogolák P; Tóth GK; Fazekas G; Fridkin M; Pecht I
    Eur J Immunol; 1997 Dec; 27(12):3105-14. PubMed ID: 9464794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions between immunogenic peptides and MHC proteins.
    Rothbard JB; Gefter ML
    Annu Rev Immunol; 1991; 9():527-65. PubMed ID: 1910688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Definition of MHC supertypes through clustering of MHC peptide-binding repertoires.
    Reche PA; Reinherz EL
    Methods Mol Biol; 2007; 409():163-73. PubMed ID: 18449999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Naturally-occurring peptide antigens derived from the MHC class-I-restricted processing pathway.
    Rötzschke O; Falk K
    Immunol Today; 1991 Dec; 12(12):447-55. PubMed ID: 1723878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations.
    Antes I; Siu SW; Lengauer T
    Bioinformatics; 2006 Jul; 22(14):e16-24. PubMed ID: 16873467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of machine learning techniques in predicting MHC binders.
    Lata S; Bhasin M; Raghava GP
    Methods Mol Biol; 2007; 409():201-15. PubMed ID: 18450002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In silico prediction of peptide-MHC binding affinity using SVRMHC.
    Liu W; Wan J; Meng X; Flower DR; Li T
    Methods Mol Biol; 2007; 409():283-91. PubMed ID: 18450008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Learning MHC I--peptide binding.
    Jojic N; Reyes-Gomez M; Heckerman D; Kadie C; Schueler-Furman O
    Bioinformatics; 2006 Jul; 22(14):e227-35. PubMed ID: 16873476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving MHC binding peptide prediction by incorporating binding data of auxiliary MHC molecules.
    Zhu S; Udaka K; Sidney J; Sette A; Aoki-Kinoshita KF; Mamitsuka H
    Bioinformatics; 2006 Jul; 22(13):1648-55. PubMed ID: 16613909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling major histocompatibility complex binding by nonparametric averaging of multiple predictors and sequence encodings.
    Huang JC; Jojic N
    J Immunol Methods; 2011 Nov; 374(1-2):35-42. PubMed ID: 20934429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of genetic search in derivation of matrix models of peptide binding to MHC molecules.
    Brusic V; Schönbach C; Takiguchi M; Ciesielski V; Harrison LC
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():75-83. PubMed ID: 9322018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method.
    He J; Yang G; Rao H; Li Z; Ding X; Chen Y
    Artif Intell Med; 2012 Jun; 55(2):107-15. PubMed ID: 22134095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemistry of peptide interactions with MHC proteins.
    Sette A; Grey HM
    Curr Opin Immunol; 1992 Feb; 4(1):79-86. PubMed ID: 1596372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Support vector machine-based prediction of MHC-binding peptides.
    Dönnes P
    Methods Mol Biol; 2007; 409():273-82. PubMed ID: 18450007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The three-dimensional structure of peptide-MHC complexes.
    Madden DR
    Annu Rev Immunol; 1995; 13():587-622. PubMed ID: 7612235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ensemble approaches for improving HLA class I-peptide binding prediction.
    Hu X; Mamitsuka H; Zhu S
    J Immunol Methods; 2011 Nov; 374(1-2):47-52. PubMed ID: 20849860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward more accurate pan-specific MHC-peptide binding prediction: a review of current methods and tools.
    Zhang L; Udaka K; Mamitsuka H; Zhu S
    Brief Bioinform; 2012 May; 13(3):350-64. PubMed ID: 21949215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peptide presentation by class-I major histocompatibility complex molecules.
    Nikolić-Zugić J; Carbone FR
    Immunol Res; 1991; 10(1):54-65. PubMed ID: 1865131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.