BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 21333809)

  • 1. Chapter 11--novel mechanism for hyperreflexia and spasticity.
    Yates C; Garrison K; Reese NB; Charlesworth A; Garcia-Rill E
    Prog Brain Res; 2011; 188():167-80. PubMed ID: 21333809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The tonic stretch reflex and spastic hypertonia after spinal cord injury.
    Woolacott AJ; Burne JA
    Exp Brain Res; 2006 Sep; 174(2):386-96. PubMed ID: 16680428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of passive exercise therapy initiated prior to or after the development of hyperreflexia following spinal transection.
    Yates CC; Charlesworth A; Reese NB; Skinner RD; Garcia-Rill E
    Exp Neurol; 2008 Oct; 213(2):405-9. PubMed ID: 18671970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The onset of hyperreflexia in the rat following complete spinal cord transection.
    Yates C; Charlesworth A; Allen SR; Reese NB; Skinner RD; Garcia-Rill E
    Spinal Cord; 2008 Dec; 46(12):798-803. PubMed ID: 18542097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilateral and asymmetrical contributions of passive and active ankle plantar flexors stiffness to spasticity in humans with spinal cord injury.
    Chen B; Sangari S; Lorentzen J; Nielsen JB; Perez MA
    J Neurophysiol; 2020 Sep; 124(3):973-984. PubMed ID: 32432501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Afferent stimulation inhibits abnormal cutaneous reflex activity in patients with spinal cord injury spasticity syndrome.
    Gómez-Soriano J; Serrano-Muñoz D; Bravo-Esteban E; Avendaño-Coy J; Ávila-Martin G; Galán-Arriero I; Taylor J
    NeuroRehabilitation; 2018; 43(2):135-146. PubMed ID: 30040758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditional Astrocyte Rac1KO Attenuates Hyperreflexia after Spinal Cord Injury.
    Benson CA; Olson KL; Patwa S; Kauer SD; King JF; Waxman SG; Tan AM
    J Neurosci; 2024 Jan; 44(1):. PubMed ID: 37963762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incomplete spinal cord injury: neuronal mechanisms of motor recovery and hyperreflexia.
    Little JW; Ditunno JF; Stiens SA; Harris RM
    Arch Phys Med Rehabil; 1999 May; 80(5):587-99. PubMed ID: 10326926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of soleus stretch reflexes during walking in people with chronic incomplete spinal cord injury.
    Thompson AK; Mrachacz-Kersting N; Sinkjær T; Andersen JB
    Exp Brain Res; 2019 Oct; 237(10):2461-2479. PubMed ID: 31309252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury.
    Bandaru SP; Liu S; Waxman SG; Tan AM
    J Neurophysiol; 2015 Mar; 113(5):1598-615. PubMed ID: 25505110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thoracic 9 Spinal Transection-Induced Model of Muscle Spasticity in the Rat: A Systematic Electrophysiological and Histopathological Characterization.
    Corleto JA; Bravo-Hernández M; Kamizato K; Kakinohana O; Santucci C; Navarro MR; Platoshyn O; Cizkova D; Lukacova N; Taylor J; Marsala M
    PLoS One; 2015; 10(12):e0144642. PubMed ID: 26713446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury.
    Schindler-Ivens S; Shields RK
    Exp Brain Res; 2000 Jul; 133(2):233-41. PubMed ID: 10968224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From spinal shock to spasticity: neuronal adaptations to a spinal cord injury.
    Hiersemenzel LP; Curt A; Dietz V
    Neurology; 2000 Apr; 54(8):1574-82. PubMed ID: 10762496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translation of the rat thoracic contusion model; part 1-supraspinally versus spinally mediated pain-like responses and spasticity.
    van Gorp S; Deumens R; Leerink M; Nguyen S; Joosten EA; Marsala M
    Spinal Cord; 2014 Jul; 52(7):524-8. PubMed ID: 24819511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wind-up of stretch reflexes as a measure of spasticity in chronic spinalized rats: The effects of passive exercise and modafinil.
    Garrison MK; Yates CC; Reese NB; Skinner RD; Garcia-Rill E
    Exp Neurol; 2011 Jan; 227(1):104-9. PubMed ID: 20932828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased astrocytic GLT-1 expression in tripartite synapses is associated with SCI-induced hyperreflexia.
    Benson CA; King JF; Kauer SD; Waxman SG; Tan AM
    J Neurophysiol; 2023 Nov; 130(5):1358-1366. PubMed ID: 37877184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials?
    Hornby TG; Rymer WZ; Benz EN; Schmit BD
    J Neurophysiol; 2003 Jan; 89(1):416-26. PubMed ID: 12522190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-session transcutaneous spinal cord stimulation prevents chloride homeostasis imbalance and the development of hyperreflexia after spinal cord injury in rat.
    Malloy DC; Côté MP
    Exp Neurol; 2024 Jun; 376():114754. PubMed ID: 38493983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rehabilitation Decreases Spasticity by Restoring Chloride Homeostasis through the Brain-Derived Neurotrophic Factor-KCC2 Pathway after Spinal Cord Injury.
    Beverungen H; Klaszky SC; Klaszky M; Côté MP
    J Neurotrauma; 2020 Mar; 37(6):846-859. PubMed ID: 31578924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restoration of frequency-dependent depression of the H-reflex by passive exercise in spinal rats.
    Reese NB; Skinner RD; Mitchell D; Yates C; Barnes CN; Kiser TS; Garcia-Rill E
    Spinal Cord; 2006 Jan; 44(1):28-34. PubMed ID: 16044168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.