BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 21333809)

  • 41. Abnormal cutaneous flexor reflex activity during controlled isometric plantarflexion in human spinal cord injury spasticity syndrome.
    Gómez-Soriano J; Bravo-Esteban E; Pérez-Rizo E; Ávila-Martín G; Galán-Arriero I; Simón-Martinez C; Taylor J
    Spinal Cord; 2016 Sep; 54(9):687-94. PubMed ID: 26902460
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alterations in eliminative and sexual reflexes after spinal cord injury: defecatory function and development of spasticity in pelvic floor musculature.
    Nout YS; Leedy GM; Beattie MS; Bresnahan JC
    Prog Brain Res; 2006; 152():359-72. PubMed ID: 16198713
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The spinal pathophysiology of spasticity--from a basic science point of view.
    Nielsen JB; Crone C; Hultborn H
    Acta Physiol (Oxf); 2007 Feb; 189(2):171-80. PubMed ID: 17250567
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neurophysiological methods for the assessment of spasticity: the Hoffmann reflex, the tendon reflex, and the stretch reflex.
    Voerman GE; Gregoric M; Hermens HJ
    Disabil Rehabil; 2005 Jan 7-21; 27(1-2):33-68. PubMed ID: 15799143
    [TBL] [Abstract][Full Text] [Related]  

  • 45. External anal sphincter hyperreflexia following spinal transection in the rat.
    Holmes GM; Rogers RC; Bresnahan JC; Beattie MS
    J Neurotrauma; 1998 Jun; 15(6):451-7. PubMed ID: 9624630
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Knockdown of calpain1 in lumbar motoneurons reduces spasticity after spinal cord injury in adult rats.
    Kerzonkuf M; Verneuil J; Brocard C; Dingu N; Trouplin V; Ramirez Franco JJ; Bartoli M; Brocard F; Bras H
    Mol Ther; 2024 Apr; 32(4):1096-1109. PubMed ID: 38291756
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury.
    Frigon A; Thibaudier Y; Johnson MD; Heckman CJ; Hurteau MF
    Exp Neurol; 2012 Jun; 235(2):588-98. PubMed ID: 22487200
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changes of reflex size in upper limbs using wrist splint in hemiplegic patients.
    Ushiba J; Masakado Y; Komune Y; Muraoka Y; Chino N; Tomita Y
    Electromyogr Clin Neurophysiol; 2004; 44(3):175-82. PubMed ID: 15125058
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plateau potentials in sacrocaudal motoneurons of chronic spinal rats, recorded in vitro.
    Bennett DJ; Li Y; Siu M
    J Neurophysiol; 2001 Oct; 86(4):1955-71. PubMed ID: 11600653
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rhythmic arm cycling differentially modulates stretch and H-reflex amplitudes in soleus muscle.
    Palomino AF; Hundza SR; Zehr EP
    Exp Brain Res; 2011 Oct; 214(4):529-37. PubMed ID: 21901451
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time-dependent, bidirectional, anti- and pro-spinal hyper-reflexia and muscle spasticity effect after chronic spinal glycine transporter 2 (GlyT2) oligonucleotide-induced downregulation.
    Kamizato K; Marsala S; Navarro M; Kakinohana M; Platoshyn O; Yoshizumi T; Lukacova N; Wancewicz E; Powers B; Mazur C; Marsala M
    Exp Neurol; 2018 Jul; 305():66-75. PubMed ID: 29608917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control Of spasticity.
    Pinter MM; Gerstenbrand F; Dimitrijevic MR
    Spinal Cord; 2000 Sep; 38(9):524-31. PubMed ID: 11035472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A comparison of clinical and laboratory measures of spasticity.
    Nielsen JF; Sinkjaer T
    Mult Scler; 1996 Apr; 1(5):296-301. PubMed ID: 9345432
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Flexor reflex responses triggered by imposed knee extension in chronic human spinal cord injury.
    Wu M; Hornby TG; Kahn JH; Schmit BD
    Exp Brain Res; 2006 Jan; 168(4):566-76. PubMed ID: 16151779
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Temporal Indices of Ankle Clonus and Relationship to Electrophysiologic and Clinical Measures in Persons With Spinal Cord Injury.
    Manella KJ; Roach KE; Field-Fote EC
    J Neurol Phys Ther; 2017 Oct; 41(4):229-238. PubMed ID: 28922314
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Robot controlled, continuous passive movement of the ankle reduces spinal cord excitability in participants with spasticity: a pilot study.
    Noble S; Pearcey GEP; Quartly C; Zehr EP
    Exp Brain Res; 2019 Dec; 237(12):3207-3220. PubMed ID: 31599345
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Central Plasticity of Cutaneous Afferents Is Associated with Nociceptive Hyperreflexia after Spinal Cord Injury in Rats.
    Lee HJ; Malone PS; Chung J; White JM; Wilson N; Tidwell J; Tansey KE
    Neural Plast; 2019; 2019():6147878. PubMed ID: 31827498
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characteristics of the tonic stretch reflex in spastic spinal cord and head-injured patients.
    Gildenberg PL; Campos RJ; Dimitrijevic MR
    Appl Neurophysiol; 1985; 48(1-6):106-10. PubMed ID: 3837647
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of robotic-locomotor training on stretch reflex function and muscular properties in individuals with spinal cord injury.
    Mirbagheri MM; Kindig MW; Niu X
    Clin Neurophysiol; 2015 May; 126(5):997-1006. PubMed ID: 25449559
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Probable corticospinal tract control of spinal cord plasticity in the rat.
    Chen XY; Wolpaw JR
    J Neurophysiol; 2002 Feb; 87(2):645-52. PubMed ID: 11826033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.