These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21334042)

  • 41. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1).
    Blumensaat F; Keller J
    Water Res; 2005 Jan; 39(1):171-83. PubMed ID: 15607176
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of pre-treatments and recycled flows on the COD fractions of a wastewater: a case study.
    Anderson E; Ginestet P; Spérandio M; Paul E
    Water Sci Technol; 2001; 43(11):99-108. PubMed ID: 11443993
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cost-effective upgrading of a biological wastewater treatment plant by using lamella separators with bypass operation.
    Jardin N; Rath L; Schönfeld A; Grünebaum T
    Water Sci Technol; 2008; 57(10):1619-25. PubMed ID: 18520020
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fast, simultaneous simulation of the integrated urban wastewater system using mechanistic surrogate models.
    Meirlaen J; Huyghebaert B; Sforzi F; Benedetti L; Vanrolleghem P
    Water Sci Technol; 2001; 43(7):301-9. PubMed ID: 11385862
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficiency of the Activated Sludge Model no. 3 for German wastewater on six different WWTPs.
    Wichern M; Lübken M; Blömer R; Rosenwinkel KH
    Water Sci Technol; 2003; 47(11):211-8. PubMed ID: 12906292
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The HSG procedure for modelling integrated urban wastewater systems.
    Muschalla D; Schütze M; Schroeder K; Bach M; Blumensaat F; Gruber G; Klepiszewski K; Pabst M; Pressl A; Schindler N; Solvi AM; Wiese J
    Water Sci Technol; 2009; 60(8):2065-75. PubMed ID: 19844053
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role and control of sludge age in biological nutrient removal activated sludge systems.
    Ekama GA
    Water Sci Technol; 2010; 61(7):1645-52. PubMed ID: 20371921
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a flocculation sub-model for a 3-D CFD model based on rectangular settling tanks.
    Gong M; Xanthos S; Ramalingam K; Fillos J; Beckmann K; Deur A; McCorquodale JA
    Water Sci Technol; 2011; 63(2):213-9. PubMed ID: 21252422
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An advanced simulation model for membrane bioreactors: development, calibration and validation.
    Ludwig T; Gaida D; Keysers C; Pinnekamp J; Bongards M; Kern P; Wolf C; Sousa Brito AL
    Water Sci Technol; 2012; 66(7):1384-91. PubMed ID: 22864421
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimisation of Hamburg's wastewater treatment plants--three years of experience with the new concept.
    Ladiges G; Bertram NP
    Water Sci Technol; 2004; 50(7):45-8. PubMed ID: 15553457
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Climate change impacts on activated sludge wastewater treatment: a case study from Norway.
    Plósz BG; Liltved H; Ratnaweera H
    Water Sci Technol; 2009; 60(2):533-41. PubMed ID: 19633397
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software.
    Liwarska-Bizukojc E; Biernacki R
    Bioresour Technol; 2010 Oct; 101(19):7278-85. PubMed ID: 20478704
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental and numerical investigations of sedimentation of porous wastewater sludge flocs.
    Hriberšek M; Zajdela B; Hribernik A; Zadravec M
    Water Res; 2011 Feb; 45(4):1729-35. PubMed ID: 21144545
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A practitioner's perspective on the uses and future developments for wastewater treatment modelling.
    Daigger GT
    Water Sci Technol; 2011; 63(3):516-26. PubMed ID: 21278475
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel application of an anaerobic membrane process in wastewater treatment.
    You HS; Tseng CC; Peng MJ; Chang SH; Chen YC; Peng SH
    Water Sci Technol; 2005; 51(6-7):45-50. PubMed ID: 16003960
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New generic mathematical model for WWTP sludge digesters operating under aerobic and anaerobic conditions: Model building and experimental verification.
    de Gracia M; Grau P; Huete E; Gómez J; García-Heras JL; Ayesa E
    Water Res; 2009 Oct; 43(18):4626-42. PubMed ID: 19720390
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modelling the effect of shear history on activated sludge flocculation.
    Biggs C; Lant P; Hounslow M
    Water Sci Technol; 2003; 47(11):251-7. PubMed ID: 12906297
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Monitoring and troubleshooting of non-filamentous settling and dewatering problems in an industrial activated sludge treatment plant.
    Kjellerup BV; Keiding K; Nielsen PH
    Water Sci Technol; 2001; 44(2-3):155-62. PubMed ID: 11547978
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.
    Ekama GA
    Water Res; 2009 May; 43(8):2101-20. PubMed ID: 19345392
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of membrane solid-liquid separation on design of biological nutrient removal activated sludge systems.
    Ramphao M; Wentzel MC; Merritt R; Ekama GA; Young T; Buckley CA
    Biotechnol Bioeng; 2005 Mar; 89(6):630-46. PubMed ID: 15696540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.