These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21334042)

  • 81. Conservation principles suspended solids distribution modelling to support ATS introduction on a recirculating WWTP.
    Gernaey KV; Nielsen MK; Thornberg D; Höök B; Munk-Nielsen T; Ingildsen P; Jørgensen SB
    Water Sci Technol; 2004; 50(11):179-88. PubMed ID: 15685994
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Design of a tracer test experience and dynamic calibration of the hydraulic model for a full-scale wastewater treatment plant by use of AQUASIM.
    Fall C; Loaiza-Navia JL
    Water Environ Res; 2007 Aug; 79(8):893-900. PubMed ID: 17824536
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Biological nutrient removal model No.1 (BNRM1).
    Seco A; Ribes J; Serralta J; Ferrer J
    Water Sci Technol; 2004; 50(6):69-78. PubMed ID: 15536992
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Online nonlinear sequential Bayesian estimation of a biological wastewater treatment process.
    Lee JW; Hong YS; Suh C; Shin HS
    Bioprocess Biosyst Eng; 2012 Mar; 35(3):359-69. PubMed ID: 21792564
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Shall we upgrade one-dimensional secondary settler models used in WWTP simulators? - An assessment of model structure uncertainty and its propagation.
    Plósz BG; De Clercq J; Nopens I; Benedetti L; Vanrolleghem PA
    Water Sci Technol; 2011; 63(8):1726-38. PubMed ID: 21866774
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A new settling velocity model to describe secondary sedimentation.
    Ramin E; Wágner DS; Yde L; Binning PJ; Rasmussen MR; Mikkelsen PS; Plósz BG
    Water Res; 2014 Dec; 66():447-458. PubMed ID: 25243657
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Modelling of an activated primary settling tank including the fermentation process and VFA elutriation.
    Ribes J; Ferrer J; Bouzas A; Seco A
    Environ Technol; 2002 Oct; 23(10):1147-56. PubMed ID: 12465841
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Concentration-driven models revisited: towards a unified framework to model settling tanks in water resource recovery facilities.
    Torfs E; Martí MC; Locatelli F; Balemans S; Bürger R; Diehl S; Laurent J; Vanrolleghem PA; François P; Nopens I
    Water Sci Technol; 2017 Feb; 75(3-4):539-551. PubMed ID: 28192348
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A Novel Model for the Entire Settling-Thickening Process in a Secondary Settling Tank.
    He Z; Zhang Y; Wang H; Qi L; Yin X; Zhang X; Wen Y
    Water Environ Res; 2016 Dec; 88(12):2228-2232. PubMed ID: 28061936
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions.
    Ramin E; Sin G; Mikkelsen PS; Plósz BG
    Water Res; 2014 Oct; 63():209-21. PubMed ID: 25003213
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Towards more predictive clarification models via experimental determination of flocculent settling coefficient value.
    Ngo KN; Van Winckel T; Massoudieh A; Wett B; Al-Omari A; Murthy S; Takács I; De Clippeleir H
    Water Res; 2021 Feb; 190():116294. PubMed ID: 33360101
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The influence of wind in secondary settling tanks for wastewater treatment - A computational fluid dynamics study. Part II: Rectangular secondary settling tanks.
    Gao H; Stenstrom MK
    Water Environ Res; 2020 Apr; 92(4):551-561. PubMed ID: 31549753
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Predicting wastewater treatment plant performance during aeration demand shifting with a dual-layer reaction settling model.
    Giberti M; Dereli RK; Flynn D; Casey E
    Water Sci Technol; 2020 Apr; 81(7):1365-1374. PubMed ID: 32616689
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Computational simulation of flocculent sedimentation based on experimental results.
    Ramatsoma MS; Chirwa EM
    Water Sci Technol; 2012; 65(6):1007-13. PubMed ID: 22377995
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The use of response surface methodology for modelling and analysis of water and wastewater treatment processes: a review.
    Nair AT; Makwana AR; Ahammed MM
    Water Sci Technol; 2014; 69(3):464-78. PubMed ID: 24552716
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Modelling and characterization of primary settlers in view of whole plant and resource recovery modelling.
    Bachis G; Maruéjouls T; Tik S; Amerlinck Y; Melcer H; Nopens I; Lessard P; Vanrolleghem PA
    Water Sci Technol; 2015; 72(12):2251-61. PubMed ID: 26676014
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Computational fluid dynamics modelling of hydraulics and sedimentation in process reactors during aeration tank settling.
    Jensen MD; Ingildsen P; Rasmussen MR; Laursen J
    Water Sci Technol; 2006; 53(12):257-64. PubMed ID: 16889262
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Appraisal of chlorine contact tank modelling practices.
    Rauen WB; Angeloudis A; Falconer RA
    Water Res; 2012 Nov; 46(18):5834-47. PubMed ID: 22963866
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Stochastic modeling to identify requirements for centralized monitoring of distributed wastewater treatment.
    Hug T; Maurer M
    Water Sci Technol; 2012; 65(6):1067-75. PubMed ID: 22378004
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Dynamic calibration of a new secondary settler model using Cand. Microthrix as a predictor of settling velocity.
    Qiu Y; Hug T; Wágner DS; Smets BF; Valverde-Pérez B; Plósz BG
    Water Res; 2023 Nov; 246():120664. PubMed ID: 37816276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.