These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 21334186)
1. PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Sheng L; Ren J; Miao Y; Wang J; Wang E Biosens Bioelectron; 2011 Apr; 26(8):3494-9. PubMed ID: 21334186 [TBL] [Abstract][Full Text] [Related]
2. Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. Guo Z; Ren J; Wang J; Wang E Talanta; 2011 Oct; 85(5):2517-21. PubMed ID: 21962677 [TBL] [Abstract][Full Text] [Related]
3. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Wei Y; Zhang J; Wang X; Duan Y Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133 [TBL] [Abstract][Full Text] [Related]
4. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Sun AL; Zhang YF; Sun GP; Wang XN; Tang D Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001 [TBL] [Abstract][Full Text] [Related]
5. Graphene-Based Sensing Platform for On-Chip Ochratoxin A Detection. Nekrasov N; Kireev D; Emelianov A; Bobrinetskiy I Toxins (Basel); 2019 Sep; 11(10):. PubMed ID: 31547037 [TBL] [Abstract][Full Text] [Related]
6. Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Lv L; Li D; Cui C; Zhao Y; Guo Z Biosens Bioelectron; 2017 Jan; 87():136-141. PubMed ID: 27542086 [TBL] [Abstract][Full Text] [Related]
7. Fluorometric aptamer-based determination of ochratoxin A based on the use of graphene oxide and RNase H-aided amplification. Ma C; Wu K; Zhao H; Liu H; Wang K; Xia K Mikrochim Acta; 2018 Jun; 185(7):347. PubMed ID: 29961128 [TBL] [Abstract][Full Text] [Related]
8. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation. Wang C; Tan R; Li J; Zhang Z Anal Bioanal Chem; 2019 Apr; 411(11):2405-2414. PubMed ID: 30828760 [TBL] [Abstract][Full Text] [Related]
9. Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A. Jiang L; Qian J; Yang X; Yan Y; Liu Q; Wang K; Wang K Anal Chim Acta; 2014 Jan; 806():128-35. PubMed ID: 24331048 [TBL] [Abstract][Full Text] [Related]
10. Amplified Fluorescent Aptasensor for Ochratoxin A Assay Based on Graphene Oxide and RecJ Zhao H; Xiong D; Yan Y; Ma C Toxins (Basel); 2020 Oct; 12(11):. PubMed ID: 33113906 [TBL] [Abstract][Full Text] [Related]
11. Tuning the Aggregation/Disaggregation Behavior of Graphene Quantum Dots by Structure-Switching Aptamer for High-Sensitivity Fluorescent Ochratoxin A Sensor. Wang S; Zhang Y; Pang G; Zhang Y; Guo S Anal Chem; 2017 Feb; 89(3):1704-1709. PubMed ID: 28208258 [TBL] [Abstract][Full Text] [Related]
12. Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate. Xing XJ; Liu XG; Yue-He ; Luo QY; Tang HW; Pang DW Biosens Bioelectron; 2012; 37(1):61-7. PubMed ID: 22613226 [TBL] [Abstract][Full Text] [Related]
13. Detachable nanoladders: A new method for signal identification and their application in the detection of ochratoxin A (OTA). Shao X; Zhu L; Feng Y; Zhang Y; Luo Y; Huang K; Xu W Anal Chim Acta; 2019 Dec; 1087():113-120. PubMed ID: 31585559 [TBL] [Abstract][Full Text] [Related]
14. Determination of free tryptophan in serum with aptamer--comparison of two aptasensors. Yang X; Han Q; Zhang Y; Wu J; Tang X; Dong C; Liu W Talanta; 2015 Jan; 131():672-7. PubMed ID: 25281158 [TBL] [Abstract][Full Text] [Related]
15. Impedimetric thrombin aptasensor based on chemically modified graphenes. Loo AH; Bonanni A; Pumera M Nanoscale; 2012 Jan; 4(1):143-7. PubMed ID: 22068751 [TBL] [Abstract][Full Text] [Related]
16. Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A. Yang C; Lates V; Prieto-Simón B; Marty JL; Yang X Biosens Bioelectron; 2012 Feb; 32(1):208-12. PubMed ID: 22221796 [TBL] [Abstract][Full Text] [Related]
17. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Bonel L; Vidal JC; Duato P; Castillo JR Biosens Bioelectron; 2011 Mar; 26(7):3254-9. PubMed ID: 21256729 [TBL] [Abstract][Full Text] [Related]
18. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. Zhu Y; Cai Y; Xu L; Zheng L; Wang L; Qi B; Xu C ACS Appl Mater Interfaces; 2015 Apr; 7(14):7492-6. PubMed ID: 25799081 [TBL] [Abstract][Full Text] [Related]
19. Titanium Dioxide Nanoparticles (TiO₂) Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection. Sharma A; Hayat A; Mishra RK; Catanante G; Bhand S; Marty JL Toxins (Basel); 2015 Sep; 7(9):3771-84. PubMed ID: 26402704 [TBL] [Abstract][Full Text] [Related]
20. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Chang H; Tang L; Wang Y; Jiang J; Li J Anal Chem; 2010 Mar; 82(6):2341-6. PubMed ID: 20180560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]