These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2133432)

  • 1. Hypertrophy of renal mitochondria.
    Hwang S; Bohman R; Navas P; Norman JT; Bradley T; Fine LG
    J Am Soc Nephrol; 1990 Nov; 1(5):822-7. PubMed ID: 2133432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypertrophy of basolateral Na-K pump activity in the proximal tubule of the remnant kidney.
    Salehmoghaddam S; Bradley T; Mikhail N; Badie-Dezfooly B; Nord EP; Trizna W; Kheyfets R; Fine LG
    Lab Invest; 1985 Oct; 53(4):443-52. PubMed ID: 2413277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of mitochondrial glutathione status and cellular energetics in primary cultures of proximal tubular cells from remnant kidney of uninephrectomized rats.
    Benipal B; Lash LH
    Biochem Pharmacol; 2013 May; 85(9):1379-88. PubMed ID: 23419872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensatory Renal Hypertrophy and the Uptake of Cysteine S-Conjugates of Hg2+ in Isolated S2 Proximal Tubular Segments.
    Bridges CC; Barfuss DW; Joshee L; Zalups RK
    Toxicol Sci; 2016 Dec; 154(2):278-288. PubMed ID: 27562559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial proliferation within the nephron. I. Comparison of mitochondrial hyperplasia of tubular regeneration with compensatory hypertrophy.
    Cuppage FE; Chiga M; Tate A
    Am J Pathol; 1973 Jan; 70(1):119-30. PubMed ID: 4682836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional profile of the isolated uremic nephron. Evidence of proximal tubular "memory" in experimental renal disease.
    Trizna W; Yanagawa N; Bar-Khayim Y; Houston B; Fine LG
    J Clin Invest; 1981 Sep; 68(3):760-7. PubMed ID: 7276170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Changes in quantitative characteristics of mitochondria of the cortical tubules of the kidneys with compensatory hypertrophy in the blocking of autonomic mediation].
    Barinov EF; Kot AG
    Fiziol Zh (1978); 1989; 35(2):104-7. PubMed ID: 2721736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal enlargement: comparative autoradiographic studies of 3H-thymidine uptake in diabetic and uninephrectomized rats.
    Rasch R; Nörgaard JO
    Diabetologia; 1983 Sep; 25(3):280-7. PubMed ID: 6642092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proximal tubules in long-term compensatory renal growth. Quantitative light- and electron-microscopic analyses.
    Møller JC
    APMIS Suppl; 1988; 4():82-6. PubMed ID: 3224026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional correlates of compensatory renal hypertrophy.
    Hayslett JP; Kashgarian M; Epstein FH
    J Clin Invest; 1968 Apr; 47(4):774-99. PubMed ID: 5641618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cyclin kinase inhibitor p57kip2 regulates TGF-beta-induced compensatory tubular hypertrophy: effect of the immunomodulator AS101.
    Sinuani I; Weissgarten J; Beberashvili I; Rapoport MJ; Sandbank J; Feldman L; Albeck M; Averbukh Z; Sredni B
    Nephrol Dial Transplant; 2009 Aug; 24(8):2328-38. PubMed ID: 19321762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activities of enzymes involved in renal cellular glutathione metabolism after uninephrectomy in the rat.
    Lash LH; Zalups RK
    Arch Biochem Biophys; 1994 Feb; 309(1):129-38. PubMed ID: 7906934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of renal compensatory hypertrophy on mitochondrial energetics and redox status.
    Benipal B; Lash LH
    Biochem Pharmacol; 2011 Jan; 81(2):295-303. PubMed ID: 20959115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of tubulointerstitial hypertrophy and hyperplasia.
    Wolf G; Neilson EG
    Kidney Int; 1991 Mar; 39(3):401-20. PubMed ID: 1648145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compensatory renal hypertrophy is mediated by a cell cycle-dependent mechanism.
    Liu B; Preisig PA
    Kidney Int; 2002 Nov; 62(5):1650-8. PubMed ID: 12371965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early enhancement of fluid transport in rabbit proximal straight tubules after loss of contralateral renal excretory function.
    Tabei K; Levenson DJ; Brenner BM
    J Clin Invest; 1983 Sep; 72(3):871-81. PubMed ID: 6886008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Structural and functional changes in the mitochondrial apparatus of cortical tubules of the solitary kidney in chronic blockade of cholinergic mediation].
    Barinov EF; Kot AG
    Arkh Anat Gistol Embriol; 1990 Apr; 98(4):76-9. PubMed ID: 2396911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ammonium chloride alters renal tubular cell growth and protein turnover.
    Rabkin R; Palathumpat M; Tsao T
    Lab Invest; 1993 Apr; 68(4):427-38. PubMed ID: 8479151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional and toxicological characteristics of isolated renal mitochondria: impact of compensatory renal growth.
    Lash LH; Putt DA; Horky SJ; Zalups RK
    Biochem Pharmacol; 2001 Aug; 62(3):383-95. PubMed ID: 11434913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of compensatory renal hypertrophy.
    Dicker SE; Shirley DG
    J Physiol; 1971 Dec; 219(3):507-23. PubMed ID: 5157591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.