These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2133432)

  • 21. Mesangial cells initiate compensatory tubular cell hypertrophy.
    Sinuani I; Beberashvili I; Averbukh Z; Cohn M; Gitelman I; Weissgarten J
    Am J Nephrol; 2010; 31(4):326-31. PubMed ID: 20160436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Modification of the number and structure of certain cytoplasmic components of the renal tubules during compensatory hypertrophy].
    Kazimierczak J; Bucher O
    Bull Assoc Anat (Nancy); 1976 Mar; 60(168):145-50. PubMed ID: 189864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic microscopy evidence for mitochondria as targets for Cd/Se/Te-based quantum dot 705 toxicity in vivo.
    Lin CH; Chang LW; Wei YH; Wu SB; Yang CS; Chang WH; Chen YC; Lin PP
    Kaohsiung J Med Sci; 2012 Jul; 28(7 Suppl):S53-62. PubMed ID: 22871604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis.
    Layton AT; Edwards A; Vallon V
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F199-F209. PubMed ID: 28331059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptation of proximal tubular structure and function: insights into compensatory renal hypertrophy.
    Fine LG; Bradley T
    Fed Proc; 1985 Aug; 44(11):2723-7. PubMed ID: 2410299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversible compensatory hypertrophy in rat kidneys: morphometric characterization.
    Schwartz MM; Churchill M; Bidani A; Churchill PC
    Kidney Int; 1993 Mar; 43(3):610-4. PubMed ID: 8455359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrastructural markers of renal tubular transport in rats under physiological conditions.
    Kidawa Z; Cieciura L; Trznadel K
    Folia Histochem Cytobiol; 1988; 26(4):209-16. PubMed ID: 3220143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Stereologic analysis of renal cortical structures during compensatory hypertrophy in rats].
    Babić N; Huskić J; Mornjaković Z; Susko I; Avdagić N
    Med Arh; 2004; 58(2):75-8. PubMed ID: 15202310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Renovascular disease induces mitochondrial damage in swine scattered tubular cells.
    Nargesi AA; Zhu XY; Conley SM; Woollard JR; Saadiq IM; Lerman LO; Eirin A
    Am J Physiol Renal Physiol; 2019 Nov; 317(5):F1142-F1153. PubMed ID: 31461348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Variation of mitochondrial size during the cell cycle: A multiparameter flow cytometric and microscopic study.
    Kennady PK; Ormerod MG; Singh S; Pande G
    Cytometry A; 2004 Dec; 62(2):97-108. PubMed ID: 15536637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mesangial cells initiate compensatory renal tubular hypertrophy via IL-10-induced TGF-beta secretion: effect of the immunomodulator AS101 on this process.
    Sinuani I; Averbukh Z; Gitelman I; Rapoport MJ; Sandbank J; Albeck M; Sredni B; Weissgarten J
    Am J Physiol Renal Physiol; 2006 Aug; 291(2):F384-94. PubMed ID: 16571592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of osthole on advanced glycation end products-induced renal tubular hypertrophy and role of klotho in its mechanism of action.
    Kan WC; Hwang JY; Chuang LY; Guh JY; Ye YL; Yang YL; Huang JS
    Phytomedicine; 2019 Feb; 53():205-212. PubMed ID: 30668400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. S-[(1 and 2)-phenyl-2-hydroxyethyl]-cysteine-induced cytotoxicity to rat renal proximal tubules.
    Chakrabarti SK; Denniel C
    Toxicol Appl Pharmacol; 1996 Apr; 137(2):285-94. PubMed ID: 8661354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atractyloside nephrotoxicity: in vitro studies with suspensions of rat renal fragments and precision-cut cortical slices.
    Obatomi DK; Bach PH
    In Vitr Mol Toxicol; 2000; 13(1):25-36. PubMed ID: 10900405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Renal cell apoptosis in chronic obstructive uropathy: the roles of caspases.
    Truong LD; Choi YJ; Tsao CC; Ayala G; Sheikh-Hamad D; Nassar G; Suki WN
    Kidney Int; 2001 Sep; 60(3):924-34. PubMed ID: 11532087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Giant mitochondria in the epithelial cells of the proximal convoluted tubules of diseased human kidneys.
    Suzuki T; Furusato M; Takasaki S; Ishikawa E
    Lab Invest; 1975 Dec; 33(6):578-90. PubMed ID: 1202280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional profile of the isolated uremic nephron. Role of compensatory hypertrophy in the control of fluid reabsorption by the proximal straight tubule.
    Fine LG; Trizna W; Bourgoignie JJ; Bricker NS
    J Clin Invest; 1978 Jun; 61(6):1508-18. PubMed ID: 659612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of connective tissue growth factor in mediating hypertrophy of human proximal tubular cells induced by angiotensin II.
    Liu BC; Sun J; Chen Q; Ma KL; Ruan XZ; Phillips AO
    Am J Nephrol; 2003; 23(6):429-37. PubMed ID: 14583661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stereology of the rat kidney during compensatory renal hypertrophy.
    Seyer-Hansen K; Gundersen HJ; Osterby R
    Acta Pathol Microbiol Immunol Scand A; 1985 Jan; 93(1):9-12. PubMed ID: 3969830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intravital microscopical studies of the tubular urine flow in the conscious rat.
    Steinhausen M; Hill E; Parekh N
    Pflugers Arch; 1976 Apr; 362(3):261-4. PubMed ID: 944434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.