These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2133432)

  • 41. Stereology of the rat kidney during compensatory renal hypertrophy.
    Seyer-Hansen K; Gundersen HJ; Osterby R
    Acta Pathol Microbiol Immunol Scand A; 1985 Jan; 93(1):9-12. PubMed ID: 3969830
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intravital microscopical studies of the tubular urine flow in the conscious rat.
    Steinhausen M; Hill E; Parekh N
    Pflugers Arch; 1976 Apr; 362(3):261-4. PubMed ID: 944434
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulating factors of renal tubular hypertrophy.
    Wolf G
    Clin Investig; 1993 Oct; 71(10):867-70. PubMed ID: 8305851
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NTP Toxicology and Carcinogenesis Studies of 4,4'-Thiobis(6- t -butyl- m -cresol) (CAS No. 96-69-5) in F344/N Rats and B6C3F1 Mice (Feed Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1994 Dec; 435():1-288. PubMed ID: 12595928
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The angiotensin II type 2 receptors protect renal tubule mitochondria in early stages of diabetes mellitus.
    Micakovic T; Papagiannarou S; Clark E; Kuzay Y; Abramovic K; Peters J; Sticht C; Volk N; Fleming T; Nawroth P; Hammes HP; Alenina N; Gröne HJ; Hoffmann SC
    Kidney Int; 2018 Nov; 94(5):937-950. PubMed ID: 30190172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tubular sodium handling and tubuloglomerular feedback in compensatory renal hypertrophy.
    Pollock CA; Bostrom TE; Dyne M; Györy AZ; Field MJ
    Pflugers Arch; 1992 Feb; 420(2):159-66. PubMed ID: 1620575
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Hypertrophy and hyperplasia of renal tubular interstitial cells--regulatory factors].
    Kanetake H; Igawa T; Kanda S; Saito Y
    Nihon Rinsho; 1995 Aug; 53(8):1894-9. PubMed ID: 7563625
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative analysis of muscle cell changes in compensatory hypertrophy and work-induced hypertrophy.
    Seiden D
    Am J Anat; 1976 Apr; 145(4):459-65. PubMed ID: 1266779
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transforming growth factor-beta and its receptors in rabbit renal proximal tubules after uninephrectomy.
    García-Ocaña A; Peñaranda C; Esbrit P
    Exp Nephrol; 1996; 4(4):231-40. PubMed ID: 8864726
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitochondria transfer via tunneling nanotubes is an important mechanism by which CD133+ scattered tubular cells eliminate hypoxic tubular cell injury.
    Zou X; Hou Y; Xu J; Zhong L; Zhou J; Zhang G; Sun J
    Biochem Biophys Res Commun; 2020 Jan; 522(1):205-212. PubMed ID: 31759629
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional analysis of mouse rod and cone mitochondrial cristae architecture: bioenergetic and functional implications.
    Perkins GA; Ellisman MH; Fox DA
    Mol Vis; 2003 Mar; 9():60-73. PubMed ID: 12632036
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Contribution of renal medullary mitochondrial density to urinary concentrating ability in mammals.
    Abrahams S; Greenwald L; Stetson DL
    Am J Physiol; 1991 Sep; 261(3 Pt 2):R719-26. PubMed ID: 1887960
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional profile of the isolated uremic nephron: potassium adaptation in the rabbit cortical collecting tubule.
    Fine LG; Yanagawa N; Schultze RG; Tuck M; Trizna W
    J Clin Invest; 1979 Oct; 64(4):1033-43. PubMed ID: 225350
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polydatin Inhibits Mitochondrial Dysfunction in the Renal Tubular Epithelial Cells of a Rat Model of Sepsis-Induced Acute Kidney Injury.
    Gao Y; Zeng Z; Li T; Xu S; Wang X; Chen Z; Lin C
    Anesth Analg; 2015 Nov; 121(5):1251-60. PubMed ID: 26484460
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body.
    Duchen MR; Biscoe TJ
    J Physiol; 1992 May; 450():33-61. PubMed ID: 1432712
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Subcellular morphology of the tubules in the rat compensatory-hypertrophic kidney according to the morphometric data].
    Perov IuL
    Arkh Anat Gistol Embriol; 1978 Aug; 75(8):50-5. PubMed ID: 697587
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondrial dysfunction is involved in aristolochic acid I-induced apoptosis in renal proximal tubular epithelial cells.
    Liu X; Wu J; Wang J; Feng X; Wu H; Huang R; Fan J; Yu X; Yang X
    Hum Exp Toxicol; 2020 May; 39(5):673-682. PubMed ID: 31884831
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular mechanisms of renal hypertrophy: role of p27Kip1.
    Wolf G
    Kidney Int; 1999 Oct; 56(4):1262-5. PubMed ID: 10504470
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mitochondrial enlargement and basement membrane thickening of renal proximal tubules, possible initiators of microalbuminuria in non-insulin-dependent diabetics (NIDDM).
    Kaneda K; Sakata N; Takebayashi S
    Acta Pathol Jpn; 1992 Nov; 42(11):793-9. PubMed ID: 1471527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Age changes of mitochondria of rat kidney.
    Sato T; Tauchi H
    Mech Ageing Dev; 1982 Oct; 20(2):111-26. PubMed ID: 7176706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.