BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 21334964)

  • 1. Glycosyltransferases as biocatalysts.
    Palcic MM
    Curr Opin Chem Biol; 2011 Apr; 15(2):226-33. PubMed ID: 21334964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards tailor-made oligosaccharides-chemo-enzymatic approaches by enzyme and substrate engineering.
    Homann A; Seibel J
    Appl Microbiol Biotechnol; 2009 May; 83(2):209-16. PubMed ID: 19357843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Features and applications of bacterial glycosyltransferases: current state and prospects.
    Luzhetskyy A; Bechthold A
    Appl Microbiol Biotechnol; 2008 Oct; 80(6):945-52. PubMed ID: 18777021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transglucosidases as efficient tools for oligosaccharide and glucoconjugate synthesis.
    Monsan P; Remaud-Siméon M; André I
    Curr Opin Microbiol; 2010 Jun; 13(3):293-300. PubMed ID: 20362489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the glucansucrase GTFR enzyme reaction and glycosidic bond specificity: toward tailor-made polymer and oligosaccharide products.
    Hellmuth H; Wittrock S; Kralj S; Dijkhuizen L; Hofer B; Seibel J
    Biochemistry; 2008 Jun; 47(25):6678-84. PubMed ID: 18512955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides.
    Weijers CA; Franssen MC; Visser GM
    Biotechnol Adv; 2008; 26(5):436-56. PubMed ID: 18565714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chapter 12. The power of glycosyltransferases to generate bioactive natural compounds.
    Härle J; Bechthold A
    Methods Enzymol; 2009; 458():309-33. PubMed ID: 19374988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superbeads: immobilization in "sweet" chemistry.
    Nahalka J; Liu Z; Chen X; Wang PG
    Chemistry; 2003 Jan; 9(2):372-7. PubMed ID: 12532285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly oriented recombinant glycosyltransferases: site-specific immobilization of unstable membrane proteins by using Staphylococcus aureus sortase A.
    Ito T; Sadamoto R; Naruchi K; Togame H; Takemoto H; Kondo H; Nishimura S
    Biochemistry; 2010 Mar; 49(11):2604-14. PubMed ID: 20178374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR-based structural glycomics for high-throughput screening of carbohydrate-active enzyme specificity.
    Irague R; Massou S; Moulis C; Saurel O; Milon A; Monsan P; Remaud-Siméon M; Portais JC; Potocki-Véronèse G
    Anal Chem; 2011 Feb; 83(4):1202-6. PubMed ID: 21271685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Progress of oligosaccharides biosynthesis in recombinant Escherichia coli].
    Zhang DW; Wang P; Qi QS
    Sheng Wu Gong Cheng Xue Bao; 2007 Jan; 23(1):16-20. PubMed ID: 17366882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oligosaccharide synthesis by glycosynthases.
    Perugino G; Trincone A; Rossi M; Moracci M
    Trends Biotechnol; 2004 Jan; 22(1):31-7. PubMed ID: 14690620
    [No Abstract]   [Full Text] [Related]  

  • 13. Glycosyltransferases involved in the biosynthesis of biologically active natural products that contain oligosaccharides.
    Luzhetskyy A; Vente A; Bechthold A
    Mol Biosyst; 2005 Jul; 1(2):117-26. PubMed ID: 16880973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization of a glycosyltransferase homolog from an oral pathogen Fusobacterium nucleatum as a human glycan-modifying enzyme.
    Kim S; Oh DB; Kwon O; Jung JG; Lee YM; Ko K; Ko JH; Kang HA
    J Microbiol Biotechnol; 2008 May; 18(5):859-65. PubMed ID: 18633282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-induced conformational changes in glycosyltransferases.
    Qasba PK; Ramakrishnan B; Boeggeman E
    Trends Biochem Sci; 2005 Jan; 30(1):53-62. PubMed ID: 15653326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring genomes for glycosyltransferases.
    Hansen SF; Bettler E; Rinnan A; Engelsen SB; Breton C
    Mol Biosyst; 2010 Oct; 6(10):1773-81. PubMed ID: 20556308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding substrate specificity of GT-B fold glycosyltransferase via domain swapping and high-throughput screening.
    Park SH; Park HY; Sohng JK; Lee HC; Liou K; Yoon YJ; Kim BG
    Biotechnol Bioeng; 2009 Mar; 102(4):988-94. PubMed ID: 18985617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution.
    Williams GJ; Zhang C; Thorson JS
    Nat Chem Biol; 2007 Oct; 3(10):657-62. PubMed ID: 17828251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of an aryl-C-glycoside catalyst from a natural product O-glycosyltransferase.
    Härle J; Günther S; Lauinger B; Weber M; Kammerer B; Zechel DL; Luzhetskyy A; Bechthold A
    Chem Biol; 2011 Apr; 18(4):520-30. PubMed ID: 21513888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput screening methodology for the directed evolution of glycosyltransferases.
    Aharoni A; Thieme K; Chiu CP; Buchini S; Lairson LL; Chen H; Strynadka NC; Wakarchuk WW; Withers SG
    Nat Methods; 2006 Aug; 3(8):609-14. PubMed ID: 16862135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.