These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 21335000)
1. Cryopreservation of amniotic fluid-derived stem cells using natural cryoprotectants and low concentrations of dimethylsulfoxide. Seo JM; Sohn MY; Suh JS; Atala A; Yoo JJ; Shon YH Cryobiology; 2011 Jun; 62(3):167-73. PubMed ID: 21335000 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of cell viability and apoptosis in human amniotic fluid-derived stem cells with natural cryoprotectants. Cho HJ; Lee SH; Yoo JJ; Shon YH Cryobiology; 2014 Apr; 68(2):244-50. PubMed ID: 24530510 [TBL] [Abstract][Full Text] [Related]
3. Evaluations of bioantioxidants in cryopreservation of umbilical cord blood using natural cryoprotectants and low concentrations of dimethylsulfoxide. Motta JP; Gomes BE; Bouzas LF; Paraguassú-Braga FH; Porto LC Cryobiology; 2010 Jun; 60(3):301-7. PubMed ID: 20152822 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Rodrigues JP; Paraguassú-Braga FH; Carvalho L; Abdelhay E; Bouzas LF; Porto LC Cryobiology; 2008 Apr; 56(2):144-51. PubMed ID: 18313656 [TBL] [Abstract][Full Text] [Related]
5. Serum-free cryopreservation of human amniotic epithelial cells before and after isolation from their natural scaffold. Niknejad H; Deihim T; Peirovi H; Abolghasemi H Cryobiology; 2013 Aug; 67(1):56-63. PubMed ID: 23685252 [TBL] [Abstract][Full Text] [Related]
6. Systematic parameter optimization of a Me(2)SO- and serum-free cryopreservation protocol for human mesenchymal stem cells. Freimark D; Sehl C; Weber C; Hudel K; Czermak P; Hofmann N; Spindler R; Glasmacher B Cryobiology; 2011 Oct; 63(2):67-75. PubMed ID: 21620818 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation. Janz Fde L; Debes Ade A; Cavaglieri Rde C; Duarte SA; Romão CM; Morón AF; Zugaib M; Bydlowski SP J Biomed Biotechnol; 2012; 2012():649353. PubMed ID: 22665987 [TBL] [Abstract][Full Text] [Related]
8. Safe and effective cryopreservation methods for long-term storage of human-amniotic-fluid-derived stem cells. Hennes A; Gucciardo L; Zia S; Lesage F; Lefèvre N; Lewi L; Vorsselmans A; Cos T; Lories R; Deprest J; Toelen J Prenat Diagn; 2015 May; 35(5):456-62. PubMed ID: 25641322 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a low cost cryopreservation system on the biology of human amniotic fluid-derived mesenchymal stromal cells. Miranda-Sayago JM; Fernandez-Arcas N; Benito C; Reyes-Engel A; Herrero JR; Alonso A Cryobiology; 2012 Jun; 64(3):160-6. PubMed ID: 22280955 [TBL] [Abstract][Full Text] [Related]
10. The fatty acid profile changes in marine invertebrate larval cells during cryopreservation. Odintsova NA; Boroda AV; Velansky PV; Kostetsky EY Cryobiology; 2009 Dec; 59(3):335-43. PubMed ID: 19778531 [TBL] [Abstract][Full Text] [Related]
11. Comparative analysis of transcriptional responses to the cryoprotectants, dimethyl sulfoxide and trehalose, which confer tolerance to freeze-thaw stress in Saccharomyces cerevisiae. Momose Y; Matsumoto R; Maruyama A; Yamaoka M Cryobiology; 2010 Jun; 60(3):245-61. PubMed ID: 20067782 [TBL] [Abstract][Full Text] [Related]
12. Cryopreservation of human fetal liver hematopoietic stem/progenitor cells using sucrose as an additive to the cryoprotective medium. Petrenko YA; Jones DR; Petrenko AY Cryobiology; 2008 Dec; 57(3):195-200. PubMed ID: 18765238 [TBL] [Abstract][Full Text] [Related]
13. Caspase inhibitor Z-VAD-FMK enhances the freeze-thaw survival rate of human embryonic stem cells. Heng BC; Clement MV; Cao T Biosci Rep; 2007 Oct; 27(4-5):257-64. PubMed ID: 17594512 [TBL] [Abstract][Full Text] [Related]
14. Cryobanking the genetic diversity in the critically endangered Iberian lynx (Lynx pardinus) from skin biopsies. Investigating the cryopreservation and culture ability of highly valuable explants and cells. León-Quinto T; Simón MA; Sánchez A; Martín F; Soria B Cryobiology; 2011 Apr; 62(2):145-51. PubMed ID: 21315706 [TBL] [Abstract][Full Text] [Related]
15. A combination of catalase and trehalose as additives to conventional freezing medium results in improved cryoprotection of human hematopoietic cells with reference to in vitro migration and adhesion properties. Sasnoor LM; Kale VP; Limaye LS Transfusion; 2005 Apr; 45(4):622-33. PubMed ID: 15819685 [TBL] [Abstract][Full Text] [Related]
16. Cryopreservation of human hematopoietic cells with membrane stabilizers and bioantioxidants as additives in the conventional freezing medium. Limaye LS; Kale VP J Hematother Stem Cell Res; 2001 Oct; 10(5):709-18. PubMed ID: 11672518 [TBL] [Abstract][Full Text] [Related]
17. Adoption of long-term cultures to evaluate the cryoprotective potential of trehalose for freezing hematopoietic stem cells. Scheinkönig C; Kappicht S; Kolb HJ; Schleuning M Bone Marrow Transplant; 2004 Sep; 34(6):531-6. PubMed ID: 15286692 [TBL] [Abstract][Full Text] [Related]
18. Bone marrow cryopreservation: improved recovery due to bioantioxidant additives in the freezing solution. Limaye LS Stem Cells; 1997; 15(5):353-8. PubMed ID: 9323797 [TBL] [Abstract][Full Text] [Related]
19. Biological and physicochemical characterization of a serum- and xeno-free chemically defined cryopreservation procedure for adult human progenitor cells. Zeisberger SM; Schulz JC; Mairhofer M; Ponsaerts P; Wouters G; Doerr D; Katsen-Globa A; Ehrbar M; Hescheler J; Hoerstrup SP; Zisch AH; Kolbus A; Zimmermann H Cell Transplant; 2011; 20(8):1241-57. PubMed ID: 21176408 [TBL] [Abstract][Full Text] [Related]
20. Cryopreservation of human adipose tissues. Cui XD; Gao DY; Fink BF; Vasconez HC; Pu LL Cryobiology; 2007 Dec; 55(3):269-78. PubMed ID: 17942090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]