BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 21335009)

  • 1. Metabolic restructuring during energy-limited states: insights from Artemia franciscana embryos and other animals.
    Hand SC; Menze MA; Borcar A; Patil Y; Covi JA; Reynolds JA; Toner M
    J Insect Physiol; 2011 May; 57(5):584-94. PubMed ID: 21335009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. V-ATPase inhibition prevents recovery from anoxia in Artemia franciscana embryos: quiescence signaling through dissipation of proton gradients.
    Covi JA; Treleaven WD; Hand SC
    J Exp Biol; 2005 Jul; 208(Pt 14):2799-808. PubMed ID: 16000548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. V-ATPase expression during development of Artemia franciscana embryos: potential role for proton gradients in anoxia signaling.
    Covi JA; Hand SC
    J Exp Biol; 2005 Jul; 208(Pt 14):2783-98. PubMed ID: 16000547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic downregulation and inhibition of carbohydrate catabolism during diapause in embryos of Artemia franciscana.
    Patil YN; Marden B; Brand MD; Hand SC
    Physiol Biochem Zool; 2013; 86(1):106-18. PubMed ID: 23303325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arrest of cytochrome-c oxidase synthesis coordinated with catabolic arrest in dormant Artemia embryos.
    Hofmann GE; Hand SC
    Am J Physiol; 1990 May; 258(5 Pt 2):R1184-91. PubMed ID: 2159729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of an AMP-activated protein kinase is involved in post-diapause development of Artemia franciscana encysted embryos.
    Zhu XJ; Dai JQ; Tan X; Zhao Y; Yang WJ
    BMC Dev Biol; 2009 Mar; 9():21. PubMed ID: 19284883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) controls cellular quiescence by hyperpolarizing the cell membrane during diapause in the crustacean
    Li AQ; Sun ZP; Liu X; Yang JS; Jin F; Zhu L; Jia WH; De Vos S; Van Stappen G; Bossier P; Yang WJ
    J Biol Chem; 2019 Apr; 294(16):6598-6611. PubMed ID: 30765604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmentally regulated synthesis of p8, a stress-associated transcription cofactor, in diapause-destined embryos of Artemia franciscana.
    Qiu Z; MacRae TH
    Cell Stress Chaperones; 2007; 12(3):255-64. PubMed ID: 17915558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The synthesis of diapause-specific molecular chaperones in embryos of Artemia franciscana is determined by the quantity and location of heat shock factor 1 (Hsf1).
    Tan J; MacRae TH
    Cell Stress Chaperones; 2019 Mar; 24(2):385-392. PubMed ID: 30701477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depression of nuclear transcription and extension of mRNA half-life under anoxia in Artemia franciscana embryos.
    van Breukelen F; Maier R; Hand SC
    J Exp Biol; 2000 Apr; 203(Pt 7):1123-30. PubMed ID: 10708633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quiescence in Artemia franciscana embryos: reversible arrest of metabolism and gene expression at low oxygen levels.
    Hand SC
    J Exp Biol; 1998 Apr; 201(Pt 8):1233-42. PubMed ID: 9510534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energizing an invertebrate embryo: bafilomycin-dependent respiration and the metabolic cost of proton pumping by the V-ATPase.
    Covi JA; Hand SC
    Physiol Biochem Zool; 2007; 80(4):422-32. PubMed ID: 17508337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Downregulation of a CT10 regulator of kinase (Crk) promotes the formation of diapause embryos in the brine shrimp Artemia.
    Yan ZJ; Wu WT; Xu LY; Bi N; Yang F; Yang WJ; Yang JS
    Gene; 2023 May; 866():147349. PubMed ID: 36893874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional differentiation of small heat shock proteins in diapause-destined Artemia embryos.
    King AM; Toxopeus J; MacRae TH
    FEBS J; 2013 Oct; 280(19):4761-72. PubMed ID: 23879561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel group 6 LEA protein from diapause embryos of Artemia franciscana is cytoplasmically localized.
    LeBlanc BM; Hand SC
    Tissue Cell; 2020 Dec; 67():101410. PubMed ID: 32835943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges during diapause and anhydrobiosis: Mitochondrial bioenergetics and desiccation tolerance.
    Hand SC; Moore DS; Patil Y
    IUBMB Life; 2018 Dec; 70(12):1251-1259. PubMed ID: 30369011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The small heat shock protein p26 aids development of encysting Artemia embryos, prevents spontaneous diapause termination and protects against stress.
    King AM; MacRae TH
    PLoS One; 2012; 7(8):e43723. PubMed ID: 22952748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression in diapause-destined embryos of the crustacean, Artemia franciscana.
    Qiu Z; Tsoi SC; MacRae TH
    Mech Dev; 2007; 124(11-12):856-67. PubMed ID: 17950581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Group 1 LEA proteins contribute to the desiccation and freeze tolerance of Artemia franciscana embryos during diapause.
    Toxopeus J; Warner AH; MacRae TH
    Cell Stress Chaperones; 2014 Nov; 19(6):939-48. PubMed ID: 24846336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ArHsp22, a developmentally regulated small heat shock protein produced in diapause-destined Artemia embryos, is stress inducible in adults.
    Qiu Z; MacRae TH
    FEBS J; 2008 Jul; 275(14):3556-66. PubMed ID: 18537825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.