These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 21335029)

  • 1. Classification of selective attention to auditory stimuli: toward vision-free brain-computer interfacing.
    Kim DW; Hwang HJ; Lim JH; Lee YH; Jung KY; Im CH
    J Neurosci Methods; 2011 Apr; 197(1):180-5. PubMed ID: 21335029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A vision-free brain-computer interface (BCI) paradigm based on auditory selective attention.
    Kim DW; Cho JH; Hwang HJ; Lim JH; Im CH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3684-7. PubMed ID: 22255139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel hybrid auditory BCI paradigm combining ASSR and P300.
    Kaongoen N; Jo S
    J Neurosci Methods; 2017 Mar; 279():44-51. PubMed ID: 28109832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An auditory oddball brain-computer interface for binary choices.
    Halder S; Rea M; Andreoni R; Nijboer F; Hammer EM; Kleih SC; Birbaumer N; Kübler A
    Clin Neurophysiol; 2010 Apr; 121(4):516-23. PubMed ID: 20093075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequenced subjective accents for brain-computer interfaces.
    Vlek RJ; Schaefer RS; Gielen CC; Farquhar JD; Desain P
    J Neural Eng; 2011 Jun; 8(3):036002. PubMed ID: 21464522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An independent brain-computer interface using covert non-spatial visual selective attention.
    Zhang D; Maye A; Gao X; Hong B; Engel AK; Gao S
    J Neural Eng; 2010 Feb; 7(1):16010. PubMed ID: 20083864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human auditory steady state responses to binaural and monaural beats.
    Schwarz DW; Taylor P
    Clin Neurophysiol; 2005 Mar; 116(3):658-68. PubMed ID: 15721080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G
    Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing.
    Wu CH; Chang HC; Lee PL; Li KS; Sie JJ; Sun CW; Yang CY; Li PH; Deng HT; Shyu KK
    J Neurosci Methods; 2011 Mar; 196(1):170-81. PubMed ID: 21194547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Employing an active mental task to enhance the performance of auditory attention-based brain-computer interfaces.
    Xu H; Zhang D; Ouyang M; Hong B
    Clin Neurophysiol; 2013 Jan; 124(1):83-90. PubMed ID: 22854211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An auditory brain–computer interface evoked by natural speech.
    Lopez-Gordo MA; Fernandez E; Romero S; Pelayo F; Prieto A
    J Neural Eng; 2012 Jun; 9(3):036013. PubMed ID: 22626956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Music and natural sounds in an auditory steady-state response based brain-computer interface to increase user acceptance.
    Heo J; Baek HJ; Hong S; Chang MH; Lee JS; Park KS
    Comput Biol Med; 2017 May; 84():45-52. PubMed ID: 28342407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of auditory distraction on user performance in a brain-computer interface driven by different mental tasks.
    Friedrich EV; Scherer R; Sonnleitner K; Neuper C
    Clin Neurophysiol; 2011 Oct; 122(10):2003-9. PubMed ID: 21511526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual spatial attention control in an independent brain-computer interface.
    Kelly SP; Lalor EC; Finucane C; McDarby G; Reilly RB
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1588-96. PubMed ID: 16189972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emotional faces boost up steady-state visual responses for brain-computer interface.
    Bakardjian H; Tanaka T; Cichocki A
    Neuroreport; 2011 Feb; 22(3):121-5. PubMed ID: 21178643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An online brain-computer interface using non-flashing visual evoked potentials.
    Liu T; Goldberg L; Gao S; Hong B
    J Neural Eng; 2010 Jun; 7(3):036003. PubMed ID: 20404396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.