These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
378 related articles for article (PubMed ID: 21335311)
1. Semisupervised learning using Bayesian interpretation: application to LS-SVM. Adankon MM; Cheriet M; Biem A IEEE Trans Neural Netw; 2011 Apr; 22(4):513-24. PubMed ID: 21335311 [TBL] [Abstract][Full Text] [Related]
2. Semisupervised least squares support vector machine. Adankon MM; Cheriet M; Biem A IEEE Trans Neural Netw; 2009 Dec; 20(12):1858-70. PubMed ID: 19963446 [TBL] [Abstract][Full Text] [Related]
3. Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel Fisher discriminant analysis. Van Gestel T; Suykens JA; Lanckriet G; Lambrechts A; De Moor B; Vandewalle J Neural Comput; 2002 May; 14(5):1115-47. PubMed ID: 11972910 [TBL] [Abstract][Full Text] [Related]
4. Sparse kernel learning with LASSO and Bayesian inference algorithm. Gao J; Kwan PW; Shi D Neural Netw; 2010 Mar; 23(2):257-64. PubMed ID: 19604671 [TBL] [Abstract][Full Text] [Related]
5. Low rank updated LS-SVM classifiers for fast variable selection. Ojeda F; Suykens JA; De Moor B Neural Netw; 2008; 21(2-3):437-49. PubMed ID: 18343309 [TBL] [Abstract][Full Text] [Related]
6. A support vector machine using the lazy learning approach for multi-class classification. Comak E; Arslan A J Med Eng Technol; 2006; 30(2):73-7. PubMed ID: 16531345 [TBL] [Abstract][Full Text] [Related]
7. Fast sparse approximation for least squares support vector machine. Jiao L; Bo L; Wang L IEEE Trans Neural Netw; 2007 May; 18(3):685-97. PubMed ID: 17526336 [TBL] [Abstract][Full Text] [Related]
8. On the construction of the relevance vector machine based on Bayesian Ying-Yang harmony learning. Cheng D; Nguyen MN; Gao J; Shi D Neural Netw; 2013 Dec; 48():173-9. PubMed ID: 24055959 [TBL] [Abstract][Full Text] [Related]
9. Design of a multiple kernel learning algorithm for LS-SVM by convex programming. Jian L; Xia Z; Liang X; Gao C Neural Netw; 2011 Jun; 24(5):476-83. PubMed ID: 21441012 [TBL] [Abstract][Full Text] [Related]
11. Bayesian multitask classification with Gaussian process priors. Skolidis G; Sanguinetti G IEEE Trans Neural Netw; 2011 Dec; 22(12):2011-21. PubMed ID: 21990334 [TBL] [Abstract][Full Text] [Related]
12. Application of the PSO-SVM model for recognition of control chart patterns. Ranaee V; Ebrahimzadeh A; Ghaderi R ISA Trans; 2010 Oct; 49(4):577-86. PubMed ID: 20663504 [TBL] [Abstract][Full Text] [Related]
13. A convex approach to validation-based learning of the regularization constant. Pelckmans K; Suykens JA; De Moor B IEEE Trans Neural Netw; 2007 May; 18(3):917-20. PubMed ID: 17526357 [TBL] [Abstract][Full Text] [Related]
14. Bayesian Gaussian process classification with the EM-EP algorithm. Kim HC; Ghahramani Z IEEE Trans Pattern Anal Mach Intell; 2006 Dec; 28(12):1948-59. PubMed ID: 17108369 [TBL] [Abstract][Full Text] [Related]
15. Sparse Bayesian learning for efficient visual tracking. Williams O; Blake A; Cipolla R IEEE Trans Pattern Anal Mach Intell; 2005 Aug; 27(8):1292-304. PubMed ID: 16119267 [TBL] [Abstract][Full Text] [Related]
16. Dealing with heterogeneous classification problem in the framework of multi-instance learning. Lin Z; Jia S; Luo G; Dai X; Xu B; Wu Z; Shi X; Qiao Y Talanta; 2015 Jan; 132():175-81. PubMed ID: 25476295 [TBL] [Abstract][Full Text] [Related]
18. Unsupervised learning of gaussian mixtures based on variational component splitting. Constantinopoulos C; Likas A IEEE Trans Neural Netw; 2007 May; 18(3):745-55. PubMed ID: 17526341 [TBL] [Abstract][Full Text] [Related]
19. A kernel approach for semisupervised metric learning. Yeung DY; Chang H IEEE Trans Neural Netw; 2007 Jan; 18(1):141-9. PubMed ID: 17278468 [TBL] [Abstract][Full Text] [Related]
20. A practical approach to model selection for support vector machines with a Gaussian kernel. Varewyck M; Martens JP IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):330-40. PubMed ID: 20699214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]