These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21335455)

  • 21. Thermoregulation of Biofilm Formation in Burkholderia pseudomallei Is Disrupted by Mutation of a Putative Diguanylate Cyclase.
    Plumley BA; Martin KH; Borlee GI; Marlenee NL; Burtnick MN; Brett PJ; AuCoin DP; Bowen RA; Schweizer HP; Borlee BR
    J Bacteriol; 2017 Mar; 199(5):. PubMed ID: 27956524
    [No Abstract]   [Full Text] [Related]  

  • 22. Contribution of Ena/VASP proteins to intracellular motility of listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization.
    Geese M; Loureiro JJ; Bear JE; Wehland J; Gertler FB; Sechi AS
    Mol Biol Cell; 2002 Jul; 13(7):2383-96. PubMed ID: 12134077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inactivation of bpsl1039-1040 ATP-binding cassette transporter reduces intracellular survival in macrophages, biofilm formation and virulence in the murine model of Burkholderia pseudomallei infection.
    Pinweha P; Pumirat P; Cuccui J; Jitprasutwit N; Muangsombut V; Srinon V; Boonyuen U; Thiennimitr P; Vattanaviboon P; Cia F; Willcocks S; Bancroft GJ; Wren BW; Korbsrisate S
    PLoS One; 2018; 13(5):e0196202. PubMed ID: 29771915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two tandem verprolin homology domains are necessary for a strong activation of Arp2/3 complex-induced actin polymerization and induction of microspike formation by N-WASP.
    Yamaguchi H; Miki H; Suetsugu S; Ma L; Kirschner MW; Takenawa T
    Proc Natl Acad Sci U S A; 2000 Nov; 97(23):12631-6. PubMed ID: 11058146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading.
    Kespichayawattana W; Rattanachetkul S; Wanun T; Utaisincharoen P; Sirisinha S
    Infect Immun; 2000 Sep; 68(9):5377-84. PubMed ID: 10948167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility.
    Egile C; Loisel TP; Laurent V; Li R; Pantaloni D; Sansonetti PJ; Carlier MF
    J Cell Biol; 1999 Sep; 146(6):1319-32. PubMed ID: 10491394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid identification of melioidosis agent by an insulated isothermal PCR on a field-deployable device.
    Chua KH; Tan EW; Chai HC; Puthucheary SD; Lee PC; Puah SM
    PeerJ; 2020; 8():e9238. PubMed ID: 32518734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Actopaxin, a new focal adhesion protein that binds paxillin LD motifs and actin and regulates cell adhesion.
    Nikolopoulos SN; Turner CE
    J Cell Biol; 2000 Dec; 151(7):1435-48. PubMed ID: 11134073
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri.
    Suzuki T; Miki H; Takenawa T; Sasakawa C
    EMBO J; 1998 May; 17(10):2767-76. PubMed ID: 9582270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Actin-based endosome and phagosome rocketing in macrophages: activation by the secretagogue antagonists lanthanum and zinc.
    Southwick FS; Li W; Zhang F; Zeile WL; Purich DL
    Cell Motil Cytoskeleton; 2003 Jan; 54(1):41-55. PubMed ID: 12451594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two verprolin homology domains increase the Arp2/3 complex-mediated actin polymerization activities of N-WASP and WAVE1 C-terminal regions.
    Yamaguchi H; Miki H; Takenawa T
    Biochem Biophys Res Commun; 2002 Sep; 297(2):214-9. PubMed ID: 12237104
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extended loop region of Hcp1 is critical for the assembly and function of type VI secretion system in Burkholderia pseudomallei.
    Lim YT; Jobichen C; Wong J; Limmathurotsakul D; Li S; Chen Y; Raida M; Srinivasan N; MacAry PA; Sivaraman J; Gan YH
    Sci Rep; 2015 Feb; 5():8235. PubMed ID: 25648885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of the C-terminal Extension of Formin 2 in Its Activation by Spire Protein and Processive Assembly of Actin Filaments.
    Montaville P; Kühn S; Compper C; Carlier MF
    J Biol Chem; 2016 Feb; 291(7):3302-18. PubMed ID: 26668326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tracing the environmental footprint of the Burkholderia pseudomallei lipopolysaccharide genotypes in the tropical "Top End" of the Northern Territory, Australia.
    Webb JR; Rachlin A; Rigas V; Sarovich DS; Price EP; Kaestli M; Ward LM; Mayo M; Currie BJ
    PLoS Negl Trop Dis; 2019 Jul; 13(7):e0007369. PubMed ID: 31348781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis.
    Wand ME; Müller CM; Titball RW; Michell SL
    BMC Microbiol; 2011 Jan; 11(1):11. PubMed ID: 21241461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CdpA is a Burkholderia pseudomallei cyclic di-GMP phosphodiesterase involved in autoaggregation, flagellum synthesis, motility, biofilm formation, cell invasion, and cytotoxicity.
    Lee HS; Gu F; Ching SM; Lam Y; Chua KL
    Infect Immun; 2010 May; 78(5):1832-40. PubMed ID: 20194589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines.
    Cullinane M; Gong L; Li X; Lazar-Adler N; Tra T; Wolvetang E; Prescott M; Boyce JD; Devenish RJ; Adler B
    Autophagy; 2008 Aug; 4(6):744-53. PubMed ID: 18483470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the role of the QseBC two-component sensory system in epinephrine-induced motility and intracellular replication of Burkholderia pseudomallei.
    Meethai C; Vanaporn M; Intarak N; Lerdsittikul V; Withatanung P; Janesomboon S; Vattanaviboon P; Chareonsudjai S; Wilkinson T; Stevens MP; Stevens JM; Korbsrisate S
    PLoS One; 2023; 18(2):e0282098. PubMed ID: 36821630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A high-content imaging assay for the quantification of the Burkholderia pseudomallei induced multinucleated giant cell (MNGC) phenotype in murine macrophages.
    Pegoraro G; Eaton BP; Ulrich RL; Lane DJ; Ojeda JF; Bavari S; DeShazer D; Panchal RG
    BMC Microbiol; 2014 Apr; 14():98. PubMed ID: 24750902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The WH2 Domain and Actin Nucleation: Necessary but Insufficient.
    Dominguez R
    Trends Biochem Sci; 2016 Jun; 41(6):478-490. PubMed ID: 27068179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.