These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21335475)

  • 1. Oxidative stress impairs insulin signal in skeletal muscle and causes insulin resistance in postinfarct heart failure.
    Ohta Y; Kinugawa S; Matsushima S; Ono T; Sobirin MA; Inoue N; Yokota T; Hirabayashi K; Tsutsui H
    Am J Physiol Heart Circ Physiol; 2011 May; 300(5):H1637-44. PubMed ID: 21335475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (Pro)renin receptor in skeletal muscle is involved in the development of insulin resistance associated with postinfarct heart failure in mice.
    Fukushima A; Kinugawa S; Takada S; Matsushima S; Sobirin MA; Ono T; Takahashi M; Suga T; Homma T; Masaki Y; Furihata T; Kadoguchi T; Yokota T; Okita K; Tsutsui H
    Am J Physiol Endocrinol Metab; 2014 Sep; 307(6):E503-14. PubMed ID: 25074986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct renin inhibitor ameliorates insulin resistance by improving insulin signaling and oxidative stress in the skeletal muscle from post-infarct heart failure in mice.
    Fukushima A; Kinugawa S; Takada S; Matsumoto J; Furihata T; Mizushima W; Tsuda M; Yokota T; Matsushima S; Okita K; Tsutsui H
    Eur J Pharmacol; 2016 May; 779():147-56. PubMed ID: 26988296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased myocardial NAD(P)H oxidase-derived superoxide causes the exacerbation of postinfarct heart failure in type 2 diabetes.
    Matsushima S; Kinugawa S; Yokota T; Inoue N; Ohta Y; Hamaguchi S; Tsutsui H
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H409-16. PubMed ID: 19465539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiotensin II-induced reduction in exercise capacity is associated with increased oxidative stress in skeletal muscle.
    Inoue N; Kinugawa S; Suga T; Yokota T; Hirabayashi K; Kuroda S; Okita K; Tsutsui H
    Am J Physiol Heart Circ Physiol; 2012 Mar; 302(5):H1202-10. PubMed ID: 22210751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice.
    Yokota T; Kinugawa S; Hirabayashi K; Matsushima S; Inoue N; Ohta Y; Hamaguchi S; Sobirin MA; Ono T; Suga T; Kuroda S; Tanaka S; Terasaki F; Okita K; Tsutsui H
    Am J Physiol Heart Circ Physiol; 2009 Sep; 297(3):H1069-77. PubMed ID: 19617406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The NADPH oxidase inhibitor apocynin improves cardiac sympathetic nerve terminal innervation and function in heart failure.
    Wang K; Zhu ZF; Chi RF; Li Q; Yang ZJ; Jie X; Hu XL; Han XB; Wang JP; Li B; Qin FZ; Fan B
    Exp Physiol; 2019 Nov; 104(11):1638-1649. PubMed ID: 31475749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase.
    Wei Y; Sowers JR; Clark SE; Li W; Ferrario CM; Stump CS
    Am J Physiol Endocrinol Metab; 2008 Feb; 294(2):E345-51. PubMed ID: 18073321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats.
    Cunha TF; Bechara LR; Bacurau AV; Jannig PR; Voltarelli VA; Dourado PM; Vasconcelos AR; Scavone C; Ferreira JC; Brum PC
    J Appl Physiol (1985); 2017 Apr; 122(4):817-827. PubMed ID: 28104751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of N- acetylcysteine on oxidative stress in slow-twitch soleus muscle of heart failure rats.
    Martinez PF; Bonomo C; Guizoni DM; Junior SA; Damatto RL; Cezar MD; Lima AR; Pagan LU; Seiva FR; Fernandes DC; Laurindo FR; Novelli EL; Matsubara LS; Zornoff LA; Okoshi K; Okoshi MP
    Cell Physiol Biochem; 2015; 35(1):148-59. PubMed ID: 25591758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of PPARδ signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction.
    Zizola C; Kennel PJ; Akashi H; Ji R; Castillero E; George I; Homma S; Schulze PC
    Am J Physiol Heart Circ Physiol; 2015 May; 308(9):H1078-85. PubMed ID: 25713305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction.
    Qin F; Simeone M; Patel R
    Free Radic Biol Med; 2007 Jul; 43(2):271-81. PubMed ID: 17603936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fenofibrate Therapy Restores Antioxidant Protection and Improves Myocardial Insulin Resistance in a Rat Model of Metabolic Syndrome and Myocardial Ischemia: The Role of Angiotensin II.
    Ibarra-Lara L; Sánchez-Aguilar M; Sánchez-Mendoza A; Del Valle-Mondragón L; Soria-Castro E; Carreón-Torres E; Díaz-Díaz E; Vázquez-Meza H; Guarner-Lans V; Rubio-Ruiz ME
    Molecules; 2016 Dec; 22(1):. PubMed ID: 28036029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Additive amelioration of oxidative stress and cardiac function by combined mineralocorticoid and angiotensin receptor blockers in postinfarct failing hearts.
    Noda K; Kobara M; Hamada J; Yoshifuji Y; Shiraishi T; Tanaka T; Wang J; Toba H; Nakata T
    J Cardiovasc Pharmacol; 2012 Aug; 60(2):140-9. PubMed ID: 22549451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling.
    Ogihara T; Asano T; Ando K; Chiba Y; Sakoda H; Anai M; Shojima N; Ono H; Onishi Y; Fujishiro M; Katagiri H; Fukushima Y; Kikuchi M; Noguchi N; Aburatani H; Komuro I; Fujita T
    Hypertension; 2002 Dec; 40(6):872-9. PubMed ID: 12468572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xin-Ji-Er-Kang ameliorates kidney injury following myocardial infarction by inhibiting oxidative stress via Nrf2/HO-1 pathway in rats.
    Lian FZ; Cheng P; Ruan CS; Ling XX; Wang XY; Pan M; Chen ML; Shen AZ; Gao S
    Biomed Pharmacother; 2019 Sep; 117():109124. PubMed ID: 31228798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empagliflozin restores lowered exercise endurance capacity via the activation of skeletal muscle fatty acid oxidation in a murine model of heart failure.
    Nambu H; Takada S; Fukushima A; Matsumoto J; Kakutani N; Maekawa S; Shirakawa R; Nakano I; Furihata T; Katayama T; Yamanashi K; Obata Y; Saito A; Yokota T; Kinugawa S
    Eur J Pharmacol; 2020 Jan; 866():172810. PubMed ID: 31738936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preserved Skeletal Muscle Mitochondrial Function, Redox State, Inflammation and Mass in Obese Mice with Chronic Heart Failure.
    Gortan Cappellari G; Aleksova A; Dal Ferro M; Cannatà A; Semolic A; Zanetti M; Springer J; Anker SD; Giacca M; Sinagra G; Barazzoni R
    Nutrients; 2020 Nov; 12(11):. PubMed ID: 33158222
    [No Abstract]   [Full Text] [Related]  

  • 19. Changes in skeletal muscle SR Ca2+ pump in congestive heart failure due to myocardial infarction are prevented by angiotensin II blockade.
    Shah KR; Ganguly PK; Netticadan T; Arneja AS; Dhalla NS
    Can J Physiol Pharmacol; 2004 Jul; 82(7):438-47. PubMed ID: 15389290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination angiotensin converting enzyme and direct renin inhibition in heart failure following experimental myocardial infarction.
    Connelly KA; Advani A; Advani S; Zhang Y; Thai K; Thomas S; Krum H; Kelly DJ; Gilbert RE
    Cardiovasc Ther; 2013 Apr; 31(2):84-91. PubMed ID: 21884026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.