These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21335652)

  • 1. Vortex interaction of tandem pitching and plunging plates: a two-dimensional model of hovering dragonfly-like flight.
    Rival D; Schönweitz D; Tropea C
    Bioinspir Biomim; 2011 Mar; 6(1):016008. PubMed ID: 21335652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.
    Park H; Choi H
    Bioinspir Biomim; 2012 Mar; 7(1):016008. PubMed ID: 22278952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.
    Wang JK; Sun M
    J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles.
    Zbikowski R
    Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):273-90. PubMed ID: 16210181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing.
    Lu Y; Shen GX
    J Exp Biol; 2008 Apr; 211(Pt 8):1221-30. PubMed ID: 18375846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.
    Zhao L; Deng X; Sane SP
    Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.
    Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC
    Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force measurements of flexible tandem wings in hovering and forward flights.
    Zheng Y; Wu Y; Tang H
    Bioinspir Biomim; 2015 Feb; 10(1):016021. PubMed ID: 25656164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerodynamic effects of corrugation in flapping insect wings in hovering flight.
    Meng XG; Xu L; Sun M
    J Exp Biol; 2011 Feb; 214(Pt 3):432-44. PubMed ID: 21228202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
    Aono H; Liang F; Liu H
    J Exp Biol; 2008 Jan; 211(Pt 2):239-57. PubMed ID: 18165252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings.
    Maybury WJ; Lehmann FO
    J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When vortices stick: an aerodynamic transition in tiny insect flight.
    Miller LA; Peskin CS
    J Exp Biol; 2004 Aug; 207(Pt 17):3073-88. PubMed ID: 15277562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size effects on insect hovering aerodynamics: an integrated computational study.
    Liu H; Aono H
    Bioinspir Biomim; 2009 Mar; 4(1):015002. PubMed ID: 19258688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.
    Wu P; Stanford BK; Sällström E; Ukeiley L; Ifju PG
    Bioinspir Biomim; 2011 Mar; 6(1):016009. PubMed ID: 21339627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
    Tay WB; van Oudheusden BW; Bijl H
    Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power distribution in the hovering flight of the hawk moth Manduca sexta.
    Zhao L; Deng X
    Bioinspir Biomim; 2009 Dec; 4(4):046003. PubMed ID: 19920311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
    Levy DE; Seifert A
    J Theor Biol; 2010 Oct; 266(4):691-702. PubMed ID: 20673771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight.
    Vargas A; Mittal R; Dong H
    Bioinspir Biomim; 2008 Jun; 3(2):026004. PubMed ID: 18503106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.