These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21335755)

  • 41. Fuzzy Logic-Based Risk Assessment of a Parallel Robot for Elbow and Wrist Rehabilitation.
    Tucan P; Gherman B; Major K; Vaida C; Major Z; Plitea N; Carbone G; Pisla D
    Int J Environ Res Public Health; 2020 Jan; 17(2):. PubMed ID: 31963917
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advanced Interval Type-2 Fuzzy Sliding Mode Control for Robot Manipulator.
    Hwang JH; Kang YC; Park JW; Kim DW
    Comput Intell Neurosci; 2017; 2017():9640849. PubMed ID: 28280505
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficacy of Short-Term Robot-Assisted Rehabilitation in Patients With Hand Paralysis After Stroke: A Randomized Clinical Trial.
    Villafañe JH; Taveggia G; Galeri S; Bissolotti L; Mullè C; Imperio G; Valdes K; Borboni A; Negrini S
    Hand (N Y); 2018 Jan; 13(1):95-102. PubMed ID: 28719996
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Research on assist-as-needed control strategy of wrist function-rehabilitation robot].
    Wang J; Zuo G; Zhang J; Shi C; Song T; Guo S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):129-135. PubMed ID: 32096386
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robot-assisted rehabilitation of hand function.
    Balasubramanian S; Klein J; Burdet E
    Curr Opin Neurol; 2010 Dec; 23(6):661-70. PubMed ID: 20852421
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assistive control of motion therapy devices based on pneumatic soft-actuators with rotary elastic chambers.
    Wilkening A; Baiden D; Ivlev O
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975361. PubMed ID: 22275565
    [TBL] [Abstract][Full Text] [Related]  

  • 47. VI.3. Rehabilitation robotics.
    Munih M; Bajd T
    Stud Health Technol Inform; 2010; 152():353-66. PubMed ID: 20407204
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design and development of a hand robotic rehabilitation device for post stroke patients.
    Rashedi E; Mirbagheri A; Taheri B; Farahmand F; Vossoughi GR; Parnianpour M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5026-9. PubMed ID: 19964660
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design strategies to improve patient motivation during robot-aided rehabilitation.
    Colombo R; Pisano F; Mazzone A; Delconte C; Micera S; Carrozza MC; Dario P; Minuco G
    J Neuroeng Rehabil; 2007 Feb; 4():3. PubMed ID: 17309790
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Virtual reality aided training of combined arm and leg movements of children with CP.
    Riener R; Dislaki E; Keller U; Koenig A; Van Hedel H; Nagle A
    Stud Health Technol Inform; 2013; 184():349-55. PubMed ID: 23400183
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Robotic technology and stroke rehabilitation: translating research into practice.
    Fasoli SE; Krebs HI; Hogan N
    Top Stroke Rehabil; 2004; 11(4):11-9. PubMed ID: 15592986
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy.
    Squeri V; Masia L; Giannoni P; Sandini G; Morasso P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):312-25. PubMed ID: 23508271
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
    van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robot-Assisted Rehabilitation of Hand Paralysis After Stroke Reduces Wrist Edema and Pain: A Prospective Clinical Trial.
    Borboni A; Villafañe JH; Mullè C; Valdes K; Faglia R; Taveggia G; Negrini S
    J Manipulative Physiol Ther; 2017 Jan; 40(1):21-30. PubMed ID: 27847124
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The cybernetic rehabilitation aid: preliminary results for wrist and elbow motions in healthy subjects.
    Akdogan E; Shima K; Kataoka H; Hasegawa M; Otsuka A; Tsuji T
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):697-707. PubMed ID: 22695359
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving the ROM of wrist movements in stroke patients by means of a haptic wrist robot.
    Squeri V; Masia L; Taverna L; Morasso P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1268-71. PubMed ID: 22254547
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancement of motor rehabilitation through the use of information technologies.
    Liebermann DG; Buchman AS; Franks IM
    Clin Biomech (Bristol, Avon); 2006 Jan; 21(1):8-20. PubMed ID: 16198463
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.
    Park JW; Kwak HJ; Kang YC; Kim DW
    Comput Intell Neurosci; 2016; 2016():6047906. PubMed ID: 27123001
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wrist-RoboHab: a robot for treatment and evaluation of brain injury patients.
    Baniasad MA; Farahmand M; Ansari NN
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975506. PubMed ID: 22275702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.