BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 21336173)

  • 1. Analysis of in vivo corrosion of 316L stainless steel posterior thoracolumbar plate systems: a retrieval study.
    Majid K; Crowder T; Baker E; Baker K; Koueiter D; Shields E; Herkowitz HN
    J Spinal Disord Tech; 2011 Dec; 24(8):500-5. PubMed ID: 21336173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical, corrosion and topographical analysis of stainless steel implants after different implantation periods.
    Chrzanowski W; Armitage DA; Knowles JC; Szade J; Korlacki W; Marciniak J
    J Biomater Appl; 2008 Jul; 23(1):51-71. PubMed ID: 18467745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical and metallurgical analysis of retrieved internal fixation devices.
    Cook SD; Renz EA; Barrack RL; Thomas KA; Harding AF; Haddad RJ; Milicic M
    Clin Orthop Relat Res; 1985 Apr; (194):236-47. PubMed ID: 3978921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Measurement of low corrosion rate of coronary stents-made of 316L and 317L stainless steel].
    Liang C; Guo L; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):829-31. PubMed ID: 17002118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A clinical and metallurgical analysis of retrieved Jewett and Richards hip plate devices.
    Harding AF; Cook SD; Thomas KA; Collins CL; Haddad RJ; Milicic M
    Clin Orthop Relat Res; 1985 May; (195):261-9. PubMed ID: 3978958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates.
    Krischak GD; Gebhard F; Mohr W; Krivan V; Ignatius A; Beck A; Wachter NJ; Reuter P; Arand M; Kinzl L; Claes LE
    Arch Orthop Trauma Surg; 2004 Mar; 124(2):104-13. PubMed ID: 14727127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Corrosion and haemocompatibility of 316L stainless steel with electroplated Rh film].
    Liu J; Yang D; Liang C; Guo L; Kong L; Cai Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):169-72. PubMed ID: 11450526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of a new medical stainless steel].
    Ren Y; Yang K; Zhang B; Yang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1101-3, 1122. PubMed ID: 17121363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo evaluation of a high-strength, high-ductility stainless steel for use in surgical implants.
    Syrett BC; Davis EE
    J Biomed Mater Res; 1979 Jul; 13(4):543-56. PubMed ID: 110810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of simulated inflammation on the corrosion of 316L stainless steel.
    Brooks EK; Brooks RP; Ehrensberger MT
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():200-205. PubMed ID: 27987699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline: Potential and cycles to initiation.
    Liu Y; Zhu D; Pierre D; Gilbert JL
    Acta Biomater; 2019 Oct; 97():565-577. PubMed ID: 31374339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crevice and fretting corrosion of stainless-steel plates and screws.
    Brown SA; Simpson JP
    J Biomed Mater Res; 1981 Nov; 15(6):867-78. PubMed ID: 7309768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity.
    Bayraktaroglu E; Gulsoy HO; Gulsoy N; Er O; Kilic H
    Biomed Mater Eng; 2012; 22(6):333-49. PubMed ID: 23114463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoblast and monocyte responses to 444 ferritic stainless steel intended for a magneto-mechanically actuated fibrous scaffold.
    Malheiro VN; Spear RL; Brooks RA; Markaki AE
    Biomaterials; 2011 Oct; 32(29):6883-92. PubMed ID: 21703680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro surface corrosion of stainless steel and NiTi orthodontic appliances.
    Shin JS; Oh KT; Hwang CJ
    Aust Orthod J; 2003 Apr; 19(1):13-8. PubMed ID: 12790351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Should the galvanic combination of titanium and stainless steel surgical implants be avoided?
    Høl PJ; Mølster A; Gjerdet NR
    Injury; 2008 Feb; 39(2):161-9. PubMed ID: 18054018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro studies of fretting corrosion of orthopaedic materials.
    Brown SA; Hughes PJ; Merritt K
    J Orthop Res; 1988; 6(4):572-9. PubMed ID: 3379510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyses of rampant corrosion in stainless-steel retainers of orthodontic patients.
    Kusy RP; Ambrose WW; LaVanier LA; Newman JG; Whitley JQ
    J Biomed Mater Res; 2002 Oct; 62(1):106-18. PubMed ID: 12124792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.