BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 21336308)

  • 21. Key mediators of intracellular amino acids signaling to mTORC1 activation.
    Duan Y; Li F; Tan K; Liu H; Li Y; Liu Y; Kong X; Tang Y; Wu G; Yin Y
    Amino Acids; 2015 May; 47(5):857-67. PubMed ID: 25701492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rheb protein binds CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase) protein in a GTP- and effector domain-dependent manner and influences its cellular localization and carbamoyl-phosphate synthetase (CPSase) activity.
    Sato T; Akasu H; Shimono W; Matsu C; Fujiwara Y; Shibagaki Y; Heard JJ; Tamanoi F; Hattori S
    J Biol Chem; 2015 Jan; 290(2):1096-105. PubMed ID: 25422319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The GST-BHMT assay reveals a distinct mechanism underlying proteasome inhibition-induced macroautophagy in mammalian cells.
    Rui YN; Xu Z; Chen Z; Zhang S
    Autophagy; 2015; 11(5):812-32. PubMed ID: 25984893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The FoxO-BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress.
    Lin A; Yao J; Zhuang L; Wang D; Han J; Lam EW; Gan B
    Oncogene; 2014 Jun; 33(24):3183-94. PubMed ID: 23851496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington's disease.
    Pryor WM; Biagioli M; Shahani N; Swarnkar S; Huang WC; Page DT; MacDonald ME; Subramaniam S
    Sci Signal; 2014 Oct; 7(349):ra103. PubMed ID: 25351248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Point mutations of the mTOR-RHEB pathway in renal cell carcinoma.
    Ghosh AP; Marshall CB; Coric T; Shim EH; Kirkman R; Ballestas ME; Ikura M; Bjornsti MA; Sudarshan S
    Oncotarget; 2015 Jul; 6(20):17895-910. PubMed ID: 26255626
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK.
    Zhou H; Shang C; Wang M; Shen T; Kong L; Yu C; Ye Z; Luo Y; Liu L; Li Y; Huang S
    Biochem Pharmacol; 2016 Sep; 116():39-50. PubMed ID: 27396756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rheb regulates nuclear mTORC1 activity independent of farnesylation.
    Zhong Y; Zhou X; Guan KL; Zhang J
    Cell Chem Biol; 2022 Jun; 29(6):1037-1045.e4. PubMed ID: 35294906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ral and Rheb GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion.
    Martin TD; Chen XW; Kaplan RE; Saltiel AR; Walker CL; Reiner DJ; Der CJ
    Mol Cell; 2014 Jan; 53(2):209-20. PubMed ID: 24389102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amino acid signalling upstream of mTOR.
    Jewell JL; Russell RC; Guan KL
    Nat Rev Mol Cell Biol; 2013 Mar; 14(3):133-9. PubMed ID: 23361334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of negative-regulating proteins of Rheb/mTORC1 with much-reduced sizes of the tuberous sclerosis protein complex.
    Fu W; Wu G
    Protein Sci; 2023 Aug; 32(8):e4731. PubMed ID: 37462942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational analysis of an autophagy/translation switch based on mutual inhibition of MTORC1 and ULK1.
    SzymaƄska P; Martin KR; MacKeigan JP; Hlavacek WS; Lipniacki T
    PLoS One; 2015; 10(3):e0116550. PubMed ID: 25761126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. mTOR direct interactions with Rheb-GTPase and raptor: sub-cellular localization using fluorescence lifetime imaging.
    Yadav RB; Burgos P; Parker AW; Iadevaia V; Proud CG; Allen RA; O'Connell JP; Jeshtadi A; Stubbs CD; Botchway SW
    BMC Cell Biol; 2013 Jan; 14():3. PubMed ID: 23311891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rheb and Rags come together at the lysosome to activate mTORC1.
    Groenewoud MJ; Zwartkruis FJ
    Biochem Soc Trans; 2013 Aug; 41(4):951-5. PubMed ID: 23863162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ceramide inhibits insulin-stimulated Akt phosphorylation through activation of Rheb/mTORC1/S6K signaling in skeletal muscle.
    Hsieh CT; Chuang JH; Yang WC; Yin Y; Lin Y
    Cell Signal; 2014 Jul; 26(7):1400-8. PubMed ID: 24650522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating the mTOR Pathway in Physiological and Pharmacological Settings.
    Hong S; Inoki K
    Methods Enzymol; 2017; 587():405-428. PubMed ID: 28253969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of mechanically regulated phosphorylation sites on tuberin (TSC2) that control mechanistic target of rapamycin (mTOR) signaling.
    Jacobs BL; McNally RM; Kim KJ; Blanco R; Privett RE; You JS; Hornberger TA
    J Biol Chem; 2017 Apr; 292(17):6987-6997. PubMed ID: 28289099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arf5-mediated regulation of mTORC1 at the plasma membrane.
    Makhoul C; Houghton FJ; Hinde E; Gleeson PA
    Mol Biol Cell; 2023 Apr; 34(4):ar23. PubMed ID: 36735494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A posttranslational modification cascade involving p38, Tip60, and PRAK mediates oncogene-induced senescence.
    Zheng H; Seit-Nebi A; Han X; Aslanian A; Tat J; Liao R; Yates JR; Sun P
    Mol Cell; 2013 Jun; 50(5):699-710. PubMed ID: 23685072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of the AMP-activated protein kinase-p38 MAP kinase pathway mediates apoptosis induced by conjugated linoleic acid in p53-mutant mouse mammary tumor cells.
    Hsu YC; Meng X; Ou L; Ip MM
    Cell Signal; 2010 Apr; 22(4):590-9. PubMed ID: 19932174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.