BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21336338)

  • 1. Detecting and analyzing differentially activated pathways in brain regions of Alzheimer's disease patients.
    Liu ZP; Wang Y; Zhang XS; Xia W; Chen L
    Mol Biosyst; 2011 May; 7(5):1441-52. PubMed ID: 21336338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression profiling in Alzheimer's disease brain microvessels.
    Wang S; Qaisar U; Yin X; Grammas P
    J Alzheimers Dis; 2012; 31(1):193-205. PubMed ID: 22531426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.
    Hu YS; Xin J; Hu Y; Zhang L; Wang J
    Alzheimers Res Ther; 2017 Apr; 9(1):29. PubMed ID: 28446202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel subtractive transcription-based amplification of mRNA (STAR) method and its application in search of rare and differentially expressed genes in AD brains.
    Liu QY; Sooknanan RR; Malek LT; Ribecco-Lutkiewicz M; Lei JX; Shen H; Lach B; Walker PR; Martin J; Sikorska M
    BMC Genomics; 2006 Nov; 7():286. PubMed ID: 17090317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring candidate genes for human brain diseases from a brain-specific gene network.
    Liu B; Jiang T; Ma S; Zhao H; Li J; Jiang X; Zhang J
    Biochem Biophys Res Commun; 2006 Nov; 349(4):1308-14. PubMed ID: 16973128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of cortical gene expression in mouse models of Alzheimer's disease.
    Wu ZL; Ciallella JR; Flood DG; O'Kane TM; Bozyczko-Coyne D; Savage MJ
    Neurobiol Aging; 2006 Mar; 27(3):377-86. PubMed ID: 15927307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early brain response to low-dose radiation exposure involves molecular networks and pathways associated with cognitive functions, advanced aging and Alzheimer's disease.
    Lowe XR; Bhattacharya S; Marchetti F; Wyrobek AJ
    Radiat Res; 2009 Jan; 171(1):53-65. PubMed ID: 19138050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular network of microRNA targets in Alzheimer's disease brains.
    Satoh J
    Exp Neurol; 2012 Jun; 235(2):436-46. PubMed ID: 21945006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping cellular transcriptosomes in autopsied Alzheimer's disease subjects and relevant animal models.
    Reddy PH; McWeeney S
    Neurobiol Aging; 2006 Aug; 27(8):1060-77. PubMed ID: 16157420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Important differences between human and mouse APOE gene promoters: limitation of mouse APOE model in studying Alzheimer's disease.
    Maloney B; Ge YW; Alley GM; Lahiri DK
    J Neurochem; 2007 Nov; 103(3):1237-57. PubMed ID: 17854398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating gene expression and phenotypic information to analyze Alzheimer's disease.
    Ray M; Zhang W
    J Alzheimers Dis; 2009; 16(1):73-84. PubMed ID: 19158423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single molecule profiling of tau gene expression in Alzheimer's disease.
    Conrad C; Zhu J; Conrad C; Schoenfeld D; Fang Z; Ingelsson M; Stamm S; Church G; Hyman BT
    J Neurochem; 2007 Nov; 103(3):1228-36. PubMed ID: 17727636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer's diseased brains.
    Piñero DJ; Hu J; Connor JR
    Cell Mol Biol (Noisy-le-grand); 2000 Jun; 46(4):761-76. PubMed ID: 10875438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal networks in Alzheimer's disease.
    He Y; Chen Z; Gong G; Evans A
    Neuroscientist; 2009 Aug; 15(4):333-50. PubMed ID: 19458383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease.
    Wang M; Roussos P; McKenzie A; Zhou X; Kajiwara Y; Brennand KJ; De Luca GC; Crary JF; Casaccia P; Buxbaum JD; Ehrlich M; Gandy S; Goate A; Katsel P; Schadt E; Haroutunian V; Zhang B
    Genome Med; 2016 Nov; 8(1):104. PubMed ID: 27799057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox proteomics identification of oxidatively modified proteins in Alzheimer's disease brain and in vivo and in vitro models of AD centered around Abeta(1-42).
    Sultana R; Perluigi M; Butterfield DA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Mar; 833(1):3-11. PubMed ID: 16236561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The construction of common and specific significance subnetworks of Alzheimer's disease from multiple brain regions.
    Kong W; Mou X; Zhang N; Zeng W; Li S; Yang Y
    Biomed Res Int; 2015; 2015():394260. PubMed ID: 25866779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward an Alzheimer's disease diagnosis via high-resolution blood gene expression.
    Fehlbaum-Beurdeley P; Jarrige-Le Prado AC; Pallares D; Carrière J; Guihal C; Soucaille C; Rouet F; Drouin D; Sol O; Jordan H; Wu D; Lei L; Einstein R; Schweighoffer F; Bracco L
    Alzheimers Dement; 2010 Jan; 6(1):25-38. PubMed ID: 20129318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alzheimer's disease: the cholesterol connection.
    Puglielli L; Tanzi RE; Kovacs DM
    Nat Neurosci; 2003 Apr; 6(4):345-51. PubMed ID: 12658281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics: a new approach to investigate oxidative stress in Alzheimer's disease brain.
    Butterfield DA
    Brain Res; 2004 Mar; 1000(1-2):1-7. PubMed ID: 15053946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.